wilson.run.smeft.beta module
SMEFT beta functions
"""SMEFT beta functions""" import numpy as np from collections import OrderedDict from wilson.util import smeftutil from functools import lru_cache I3 = np.identity(3) class HashableArray(np.ndarray): def __new__(cls, data, dtype=None): return np.array(data, dtype).view(cls) def __hash__(self): return hash(self.data.tobytes()) # return int(sha1(self).hexdigest(), 16) def __eq__(self, other): return np.all(np.ndarray.__eq__(self, other)) def __setitem__(self, key, value): raise Exception('HashableArray is read-only') def my_einsum(indices, *args): hashargs = [HashableArray(arg) for arg in args] return _cached_einsum(indices, *hashargs) @lru_cache(2048) def _cached_einsum(indices, *args): return np.einsum(indices, *args) def beta(C, HIGHSCALE=1, newphys=True): """Return the beta functions of all SM parameters and SMEFT Wilson coefficients.""" g = C["g"] gp = C["gp"] gs = C["gs"] m2 = C["m2"] Lambda = C["Lambda"] Gu = C["Gu"] Gd = C["Gd"] Ge = C["Ge"] Eta1 = (3*np.trace(C["uphi"] @ Gu.conj().T) \ + 3*np.trace(C["dphi"] @ Gd.conj().T) \ + np.trace(C["ephi"] @ Ge.conj().T) \ + 3*np.conj(np.trace(C["uphi"] @ Gu.conj().T)) \ + 3*np.conj(np.trace(C["dphi"] @ Gd.conj().T)) \ + np.conj(np.trace(C["ephi"] @ Ge.conj().T)))/2 Eta2 = -6*np.trace(C["phiq3"] @ Gu @ Gu.conj().T) \ - 6*np.trace(C["phiq3"] @ Gd @ Gd.conj().T) \ - 2*np.trace(C["phil3"] @ Ge @ Ge.conj().T) \ + 3*(np.trace(C["phiud"] @ Gd.conj().T @ Gu) \ + np.conj(np.trace(C["phiud"] @ Gd.conj().T @ Gu))) Eta3 = 3*np.trace(C["phiq1"] @ Gd @ Gd.conj().T) \ - 3*np.trace(C["phiq1"] @ Gu @ Gu.conj().T) \ + 9*np.trace(C["phiq3"] @ Gd @ Gd.conj().T) \ + 9*np.trace(C["phiq3"] @ Gu @ Gu.conj().T) \ + 3*np.trace(C["phiu"] @ Gu.conj().T @ Gu) \ - 3*np.trace(C["phid"] @ Gd.conj().T @ Gd) \ - 3*(np.trace(C["phiud"] @ Gd.conj().T @ Gu) \ + np.conj(np.trace(C["phiud"] @ Gd.conj().T @ Gu))) \ + np.trace(C["phil1"] @ Ge @ Ge.conj().T) \ + 3*np.trace(C["phil3"] @ Ge @ Ge.conj().T) \ - np.trace(C["phie"] @ Ge.conj().T @ Ge) Eta4 = 12*np.trace(C["phiq1"] @ Gd @ Gd.conj().T) \ - 12*np.trace(C["phiq1"] @ Gu @ Gu.conj().T) \ + 12*np.trace(C["phiu"] @ Gu.conj().T @ Gu) \ - 12*np.trace(C["phid"] @ Gd.conj().T @ Gd) \ + 6*(np.trace(C["phiud"] @ Gd.conj().T @ Gu) \ + np.conj(np.trace(C["phiud"] @ Gd.conj().T @ Gu))) \ + 4*np.trace(C["phil1"] @ Ge @ Ge.conj().T) \ - 4*np.trace(C["phie"] @ Ge.conj().T @ Ge) Eta5 = 1j*3/2*(np.trace(Gd @ C["dphi"].conj().T) \ - np.conj(np.trace(Gd @ C["dphi"].conj().T))) \ - 1j*3/2*(np.trace(Gu @ C["uphi"].conj().T) \ - np.conj(np.trace(Gu @ C["uphi"].conj().T))) \ + 1j*1/2*(np.trace(Ge @ C["ephi"].conj().T) \ - np.conj(np.trace(Ge @ C["ephi"].conj().T))) GammaH = np.trace(3*Gu @ Gu.conj().T + 3*Gd @ Gd.conj().T + Ge @ Ge.conj().T) Gammaq = 1/2*(Gu @ Gu.conj().T + Gd @ Gd.conj().T) Gammau = Gu.conj().T @ Gu Gammad = Gd.conj().T @ Gd Gammal = 1/2*Ge @ Ge.conj().T Gammae = Ge.conj().T @ Ge Beta = OrderedDict() Beta["g"] = -19/6*g**3 - 8*g*m2/HIGHSCALE**2*C["phiW"] Beta["gp"] = 41/6*gp**3 - 8*gp*m2/HIGHSCALE**2*C["phiB"] Beta["gs"] = -7*gs**3 - 8*gs*m2/HIGHSCALE**2*C["phiG"] Beta["Lambda"] = 12*Lambda**2 \ + 3/4*gp**4 + 3/2*g**2*gp**2 + 9/4*g**4 - 3*(gp**2 + 3*g**2)*Lambda \ + 4*Lambda*GammaH \ - 4*(3*np.trace(Gd @ Gd.conj().T @ Gd @ Gd.conj().T) \ + 3*np.trace(Gu @ Gu.conj().T @ Gu @ Gu.conj().T) \ + np.trace(Ge @ Ge.conj().T @ Ge @ Ge.conj().T)) \ + 4*m2/HIGHSCALE**2*(12*C["phi"] \ + (-16*Lambda + 10/3*g**2)*C["phiBox"] \ + (6*Lambda + 3/2*(gp**2 - g**2))*C["phiD"] \ + 2*(Eta1 + Eta2) \ + 9*g**2*C["phiW"] \ + 3*gp**2*C["phiB"] \ + 3*g*gp*C["phiWB"] \ + 4/3*g**2*(np.trace(C["phil3"]) \ + 3*np.trace(C["phiq3"]))) Beta["m2"] = m2*(6*Lambda - 9/2*g**2 - 3/2*gp**2 \ + 2*GammaH + 4*m2/HIGHSCALE**2*(C["phiD"] \ - 2*C["phiBox"])) Beta["Gu"] = 3/2*(Gu @ Gu.conj().T @ Gu - Gd @ Gd.conj().T @ Gu) \ + (GammaH - 9/4*g**2 - 17/12*gp**2 - 8*gs**2)*Gu \ + 2*m2/HIGHSCALE**2*(3*C["uphi"] \ + 1/2*(C["phiD"] - 2*C["phiBox"])*Gu \ - C["phiq1"].conj().T @ Gu \ + 3*C["phiq3"].conj().T @ Gu \ + Gu @ C["phiu"].conj().T \ - Gd @ C["phiud"].conj().T \ - 2*(my_einsum("rpts,pt", C["qu1"], Gu) \ + 4/3*my_einsum("rpts,pt", C["qu8"], Gu)) \ - my_einsum("ptrs,pt", C["lequ1"], np.conj(Ge)) \ + 3*my_einsum("rspt,pt", C["quqd1"], np.conj(Gd)) \ + 1/2*(my_einsum("psrt,pt", C["quqd1"], np.conj(Gd)) \ + 4/3*my_einsum("psrt,pt", C["quqd8"], np.conj(Gd)))) Beta["Gd"] = 3/2*(Gd @ Gd.conj().T @ Gd - Gu @ Gu.conj().T @ Gd) \ + (GammaH - 9/4*g**2 - 5/12*gp**2 - 8*gs**2)*Gd \ + 2*m2/HIGHSCALE**2*(3*C["dphi"] + 1/2*(C["phiD"] \ - 2*C["phiBox"])*Gd \ + C["phiq1"].conj().T @ Gd \ + 3*C["phiq3"].conj().T @ Gd \ - Gd @ C["phid"].conj().T \ - Gu @ C["phiud"] \ - 2*(my_einsum("rpts,pt", C["qd1"], Gd) \ + 4/3*my_einsum("rpts,pt", C["qd8"], Gd)) \ + my_einsum("ptsr,pt", np.conj(C["ledq"]), Ge) \ + 3*my_einsum("ptrs,pt", C["quqd1"], np.conj(Gu)) \ + 1/2*(my_einsum("rpts,tp", C["quqd1"], np.conj(Gu)) \ + 4/3*my_einsum("rpts,tp", C["quqd8"], np.conj(Gu)))) Beta["Ge"] = 3/2*Ge @ Ge.conj().T @ Ge + (GammaH \ - 3/4*(3*g**2 + 5*gp**2))*Ge + 2*m2/HIGHSCALE**2*(3*C["ephi"] \ + 1/2*(C["phiD"] - 2*C["phiBox"])*Ge \ + C["phil1"].conj().T @ Ge \ + 3*C["phil3"].conj().T @ Ge \ - Ge @ C["phie"].conj().T \ - 2*my_einsum("rpts,pt", C["le"], Ge) \ + 3*my_einsum("rspt,tp", C["ledq"], Gd) \ - 3*my_einsum("rspt,pt", C["lequ1"], np.conj(Gu))) if not newphys: # if there is no new physics, generate a dictionary with zero # Wilson coefficients (i.e. zero beta functions) BetaSM = smeftutil.C_array2dict(np.zeros(5000)) BetaSM.update(Beta) return BetaSM XiB = 2/3*(C["phiBox"] + C["phiD"]) \ + 8/3*( - np.trace(C["phil1"]) + np.trace(C["phiq1"]) \ - np.trace(C["phie"]) \ + 2*np.trace(C["phiu"]) - np.trace(C["phid"])) Xie = 2*my_einsum("prst,rs", C["le"], Ge) \ - 3*my_einsum("ptsr,rs", C["ledq"], Gd) \ + 3*my_einsum("ptsr,sr", C["lequ1"], np.conj(Gu)) Xid = 2*(my_einsum("prst,rs", C["qd1"], Gd) \ + 4/3*my_einsum("prst,rs", C["qd8"], Gd)) \ - (3*my_einsum("srpt,sr", C["quqd1"], np.conj(Gu)) \ + 1/2*(my_einsum("prst,sr", C["quqd1"], np.conj(Gu)) \ + 4/3*my_einsum("prst,sr", C["quqd8"], np.conj(Gu)))) \ - my_einsum("srtp,sr", np.conj(C["ledq"]), Ge) Xiu = 2*(my_einsum("prst,rs", C["qu1"], Gu) \ + 4/3*my_einsum("prst,rs", C["qu8"], Gu)) \ - (3*my_einsum("ptsr,sr", C["quqd1"], np.conj(Gd)) \ + 1/2*(my_einsum("stpr,sr", C["quqd1"], np.conj(Gd)) \ + 4/3*my_einsum("stpr,sr", C["quqd8"], np.conj(Gd)))) \ + my_einsum("srpt,sr", C["lequ1"], np.conj(Ge)) Beta["G"] = 15*gs**2*C["G"] Beta["Gtilde"] = 15*gs**2*C["Gtilde"] Beta["W"] = 29/2*g**2*C["W"] Beta["Wtilde"] = 29/2*g**2*C["Wtilde"] #c.c. Beta["phi"] = -9/2*(3*g**2 \ + gp**2)*C["phi"] \ + Lambda*(20/3*g**2*C["phiBox"] \ + 3*(gp**2 \ - g**2)*C["phiD"]) \ - 3/4*(g**2 \ + gp**2)**2*C["phiD"] \ + 6*Lambda*(3*g**2*C["phiW"] \ + gp**2*C["phiB"] \ + g*gp*C["phiWB"]) \ - 3*(g**2*gp**2 \ + 3*g**4)*C["phiW"] \ - 3*(gp**4 \ + g**2*gp**2)*C["phiB"] \ - 3*(g*gp**3 \ + g**3*gp)*C["phiWB"] \ + 8/3*Lambda*g**2*(np.trace(C["phil3"]) \ + 3*np.trace(C["phiq3"])) \ + 54*Lambda*C["phi"] \ - 40*Lambda**2*C["phiBox"] \ + 12*Lambda**2*C["phiD"] \ + 4*Lambda*(Eta1 \ + Eta2) \ - 4*(3*np.trace(C["uphi"] @ Gu.conj().T @ Gu @ Gu.conj().T) \ + 3*np.trace(C["dphi"] @ Gd.conj().T @ Gd @ Gd.conj().T) \ + np.trace(C["ephi"] @ Ge.conj().T @ Ge @ Ge.conj().T) \ + 3*np.conj(np.trace(C["uphi"] @ Gu.conj().T @ Gu @ Gu.conj().T)) \ + 3*np.conj(np.trace(C["dphi"] @ Gd.conj().T @ Gd @ Gd.conj().T)) \ + np.conj(np.trace(C["ephi"] @ Ge.conj().T @ Ge @ Ge.conj().T))) \ + 6*GammaH*C["phi"] Beta["phiBox"] = -(4*g**2 \ + 4/3*gp**2)*C["phiBox"] \ + 5/3*gp**2*C["phiD"] \ + 2*g**2*(np.trace(C["phil3"]) \ + 3*np.trace(C["phiq3"])) \ + 2/3*gp**2*(2*np.trace(C["phiu"]) \ - np.trace(C["phid"]) \ - np.trace(C["phie"]) \ + np.trace(C["phiq1"]) \ - np.trace(C["phil1"])) \ + 12*Lambda*C["phiBox"] \ - 2*Eta3 \ + 4*GammaH*C["phiBox"] Beta["phiD"] = 20/3*gp**2*C["phiBox"] \ + (9/2*g**2 \ - 5/6*gp**2)*C["phiD"] \ + 8/3*gp**2*(2*np.trace(C["phiu"]) \ - np.trace(C["phid"]) \ - np.trace(C["phie"]) \ + np.trace(C["phiq1"]) \ - np.trace(C["phil1"])) \ + 6*Lambda*C["phiD"] \ - 2*Eta4 \ + 4*GammaH*C["phiD"] #c.c. Beta["phiG"] = (-3/2*gp**2 \ - 9/2*g**2 \ - 14*gs**2)*C["phiG"] \ + 6*Lambda*C["phiG"] \ - 2*gs*(np.trace(C["uG"] @ Gu.conj().T) \ + np.trace(C["dG"] @ Gd.conj().T) \ + np.conj(np.trace(C["uG"] @ Gu.conj().T)) \ + np.conj(np.trace(C["dG"] @ Gd.conj().T))) \ + 2*GammaH*C["phiG"] #c.c. Beta["phiB"] = (85/6*gp**2 \ - 9/2*g**2)*C["phiB"] \ + 3*g*gp*C["phiWB"] \ + 6*Lambda*C["phiB"] \ + gp*( \ - 5*np.trace(C["uB"] @ Gu.conj().T) \ + np.trace(C["dB"] @ Gd.conj().T) \ + 3*np.trace(C["eB"] @ Ge.conj().T) \ - 5*np.conj(np.trace(C["uB"] @ Gu.conj().T)) \ + np.conj(np.trace(C["dB"] @ Gd.conj().T)) \ + 3*np.conj(np.trace(C["eB"] @ Ge.conj().T))) \ + 2*GammaH*C["phiB"] #c.c. Beta["phiW"] = (-3/2*gp**2 \ - 53/6*g**2)*C["phiW"] \ + g*gp*C["phiWB"] \ - 15*g**3*C["W"] \ + 6*Lambda*C["phiW"] \ - g*(3*np.trace(C["uW"] @ Gu.conj().T) \ + 3*np.trace(C["dW"] @ Gd.conj().T) \ + np.trace(C["eW"] @ Ge.conj().T) \ + 3*np.conj(np.trace(C["uW"] @ Gu.conj().T)) \ + 3*np.conj(np.trace(C["dW"] @ Gd.conj().T)) \ + np.conj(np.trace(C["eW"] @ Ge.conj().T))) \ + 2*GammaH*C["phiW"] #c.c. Beta["phiWB"] = (19/3*gp**2 \ + 4/3*g**2)*C["phiWB"] \ + 2*g*gp*(C["phiB"] \ + C["phiW"]) \ + 3*g**2*gp*C["W"] \ + 2*Lambda*C["phiWB"] \ + g*(3*np.trace(C["uB"] @ Gu.conj().T) \ - 3*np.trace(C["dB"] @ Gd.conj().T) \ - np.trace(C["eB"] @ Ge.conj().T) \ + 3*np.conj(np.trace(C["uB"] @ Gu.conj().T)) \ - 3*np.conj(np.trace(C["dB"] @ Gd.conj().T)) \ - np.conj(np.trace(C["eB"] @ Ge.conj().T))) \ + gp*(5*np.trace(C["uW"] @ Gu.conj().T) \ + np.trace(C["dW"] @ Gd.conj().T) \ + 3*np.trace(C["eW"] @ Ge.conj().T) \ + 5*np.conj(np.trace(C["uW"] @ Gu.conj().T)) \ + np.conj(np.trace(C["dW"] @ Gd.conj().T)) \ + 3*np.conj(np.trace(C["eW"] @ Ge.conj().T))) \ + 2*GammaH*C["phiWB"] #problem with i as I*iCPV Beta["phiGtilde"] = (-3/2*gp**2 \ - 9/2*g**2 \ - 14*gs**2)*C["phiGtilde"] \ + 6*Lambda*C["phiGtilde"] \ + 2j*gs*(np.trace(C["uG"] @ Gu.conj().T) \ + np.trace(C["dG"] @ Gd.conj().T) \ - np.conj(np.trace(C["uG"] @ Gu.conj().T)) \ - np.conj(np.trace(C["dG"] @ Gd.conj().T))) \ + 2*GammaH*C["phiGtilde"] #i Beta["phiBtilde"] = (85/6*gp**2 \ - 9/2*g**2)*C["phiBtilde"] \ + 3*g*gp*C["phiWtildeB"] \ + 6*Lambda*C["phiBtilde"] \ - 1j*gp*( \ - 5*np.trace(C["uB"] @ Gu.conj().T) \ + np.trace(C["dB"] @ Gd.conj().T) \ + 3*np.trace(C["eB"] @ Ge.conj().T) \ + 5*np.conj(np.trace(C["uB"] @ Gu.conj().T)) \ - np.conj(np.trace(C["dB"] @ Gd.conj().T)) \ - 3*np.conj(np.trace(C["eB"] @ Ge.conj().T))) \ + 2*GammaH*C["phiBtilde"] #i Beta["phiWtilde"] = (-3/2*gp**2 \ - 53/6*g**2)*C["phiWtilde"] \ + g*gp*C["phiWtildeB"] \ - 15*g**3*C["Wtilde"] \ + 6*Lambda*C["phiWtilde"] \ + 1j*g*(3*np.trace(C["uW"] @ Gu.conj().T) \ + 3*np.trace(C["dW"] @ Gd.conj().T) \ + np.trace(C["eW"] @ Ge.conj().T) \ - 3*np.conj(np.trace(C["uW"] @ Gu.conj().T)) \ - 3*np.conj(np.trace(C["dW"] @ Gd.conj().T)) \ - np.conj(np.trace(C["eW"] @ Ge.conj().T))) \ + 2*GammaH*C["phiWtilde"] #i Beta["phiWtildeB"] = (19/3*gp**2 \ + 4/3*g**2)*C["phiWtildeB"] \ + 2*g*gp*(C["phiBtilde"] \ + C["phiWtilde"]) \ + 3*g**2*gp*C["Wtilde"] \ + 2*Lambda*C["phiWtildeB"] \ - 1j*g*(3*np.trace(C["uB"] @ Gu.conj().T) \ - 3*np.trace(C["dB"] @ Gd.conj().T) \ - np.trace(C["eB"] @ Ge.conj().T) \ - 3*np.conj(np.trace(C["uB"] @ Gu.conj().T)) \ + 3*np.conj(np.trace(C["dB"] @ Gd.conj().T)) \ + np.conj(np.trace(C["eB"] @ Ge.conj().T))) \ - 1j*gp*(5*np.trace(C["uW"] @ Gu.conj().T) \ + np.trace(C["dW"] @ Gd.conj().T) \ + 3*np.trace(C["eW"] @ Ge.conj().T) \ - 5*np.conj(np.trace(C["uW"] @ Gu.conj().T)) \ - np.conj(np.trace(C["dW"] @ Gd.conj().T)) \ - 3*np.conj(np.trace(C["eW"] @ Ge.conj().T))) \ + 2*GammaH*C["phiWtildeB"] """(3,3)""" #i #the coefficients of Eta5 is not equal Beta["uphi"] = (10/3*g**2*C["phiBox"] \ + 3/2*(gp**2 \ - g**2)*C["phiD"] \ + 32*gs**2*(C["phiG"] \ + 1j*C["phiGtilde"]) \ + 9*g**2*(C["phiW"] \ + 1j*C["phiWtilde"]) \ + 17/3*gp**2*(C["phiB"] \ + 1j*C["phiBtilde"]) \ - g*gp*(C["phiWB"] \ + 1j*C["phiWtildeB"]) \ + 4/3*g**2*(np.trace(C["phil3"]) \ + 3*np.trace(C["phiq3"])))*Gu \ - (35/12*gp**2 \ + 27/4*g**2 \ + 8*gs**2)*C["uphi"] \ - gp*(5*gp**2 \ - 3*g**2)*C["uB"] \ + g*(5*gp**2 \ - 9*g**2)*C["uW"] \ - (3*g**2 \ - gp**2)*Gu @ C["phiu"] \ + 3*g**2*Gd @ C["phiud"].conj().T \ + 4*gp**2*C["phiq1"] @ Gu \ - 4*gp**2*C["phiq3"] @ Gu \ - 5*gp*(C["uB"] @ Gu.conj().T @ Gu \ + Gu @ Gu.conj().T @ C["uB"]) \ - 3*g*(C["uW"] @ Gu.conj().T @ Gu \ - Gu @ Gu.conj().T @ C["uW"]) \ - 16*gs*(C["uG"] @ Gu.conj().T @ Gu \ + Gu @ Gu.conj().T @ C["uG"]) \ - 12*g*Gd @ Gd.conj().T @ C["uW"] \ - 6*g*C["dW"] @ Gd.conj().T @ Gu \ + Lambda*(12*C["uphi"] \ - 2*C["phiq1"] @ Gu \ + 6*C["phiq3"] @ Gu \ + 2*Gu @ C["phiu"] \ - 2*Gd @ C["phiud"].conj().T \ - 2*C["phiBox"]*Gu \ + C["phiD"]*Gu \ - 4*my_einsum("rpts,pt", C["qu1"], Gu) \ - 16/3*my_einsum("rpts,pt", C["qu8"], Gu) \ - 2*my_einsum("ptrs,pt", C["lequ1"], np.conj(Ge)) \ + 6*my_einsum("rspt,pt", C["quqd1"], np.conj(Gd)) \ + my_einsum("psrt,pt", C["quqd1"], np.conj(Gd)) \ + 4/3*my_einsum("psrt,pt", C["quqd8"], np.conj(Gd))) \ + 2*(Eta1 \ + Eta2 \ - 1j*Eta5)*Gu \ + (C["phiD"] \ - 6*C["phiBox"])*Gu @ Gu.conj().T @ Gu \ - 2*C["phiq1"] @ Gu @ Gu.conj().T @ Gu \ + 6*C["phiq3"] @ Gd @ Gd.conj().T @ Gu \ + 2*Gu @ Gu.conj().T @ Gu @ C["phiu"] \ - 2*Gd @ Gd.conj().T @ Gd @ C["phiud"].conj().T \ + 8*(my_einsum("rpts,pt", C["qu1"], Gu @ Gu.conj().T @ Gu) \ + 4/3*my_einsum("rpts,pt", C["qu8"], Gu @ Gu.conj().T @ Gu)) \ - 2*(my_einsum("tsrp,pt", C["quqd1"], Gd.conj().T @ Gd @ Gd.conj().T) \ + 4/3*my_einsum("tsrp,pt", C["quqd8"], Gd.conj().T @ Gd @ Gd.conj().T)) \ - 12*my_einsum("rstp,pt", C["quqd1"], Gd.conj().T @ Gd @ Gd.conj().T) \ + 4*my_einsum("tprs,pt", C["lequ1"], Ge.conj().T @ Ge @ Ge.conj().T) \ + 4*C["uphi"] @ Gu.conj().T @ Gu \ + 5*Gu @ Gu.conj().T @ C["uphi"] \ - 2*Gd @ C["dphi"].conj().T @ Gu \ - C["dphi"] @ Gd.conj().T @ Gu \ - 2*Gd @ Gd.conj().T @ C["uphi"] \ + 3*GammaH*C["uphi"] \ + Gammaq @ C["uphi"] \ + C["uphi"] @ Gammau #i #Eta5 Beta["dphi"] = (10/3*g**2*C["phiBox"] \ + 3/2*(gp**2 \ - g**2)*C["phiD"] \ + 32*gs**2*(C["phiG"] \ + 1j*C["phiGtilde"]) \ + 9*g**2*(C["phiW"] \ + 1j*C["phiWtilde"]) \ + 5/3*gp**2*(C["phiB"] \ + 1j*C["phiBtilde"]) \ + g*gp*(C["phiWB"] \ + 1j*C["phiWtildeB"]) \ + 4/3*g**2*(np.trace(C["phil3"]) \ + 3*np.trace(C["phiq3"])))*Gd \ - (23/12*gp**2 \ + 27/4*g**2 \ + 8*gs**2)*C["dphi"] \ - gp*(3*g**2 \ - gp**2)*C["dB"] \ - g*(9*g**2 \ - gp**2)*C["dW"] \ + (3*g**2 \ + gp**2)*Gd @ C["phid"] \ + 3*g**2*Gu @ C["phiud"] \ - 2*gp**2*C["phiq1"] @ Gd \ - 2*gp**2*C["phiq3"] @ Gd \ + gp*(C["dB"] @ Gd.conj().T @ Gd \ + Gd @ Gd.conj().T @ C["dB"]) \ - 3*g*(C["dW"] @ Gd.conj().T @ Gd \ - Gd @ Gd.conj().T @ C["dW"]) \ - 16*gs*(C["dG"] @ Gd.conj().T @ Gd \ + Gd @ Gd.conj().T @ C["dG"]) \ - 12*g*Gu @ Gu.conj().T @ C["dW"] \ - 6*g*C["uW"] @ Gu.conj().T @ Gd \ + Lambda*(12*C["dphi"] \ + 2*C["phiq1"] @ Gd \ + 6*C["phiq3"] @ Gd \ - 2*Gd @ C["phid"] \ - 2*Gu @ C["phiud"] \ - 2*C["phiBox"]*Gd \ + C["phiD"]*Gd \ - 4*my_einsum("rpts,pt", C["qd1"], Gd) \ - 16/3*my_einsum("rpts,pt", C["qd8"], Gd) \ + 2*my_einsum("ptsr,pt", np.conj(C["ledq"]), Ge) \ + 6*my_einsum("ptrs,pt", C["quqd1"], np.conj(Gu)) \ + my_einsum("rtps,pt", C["quqd1"], np.conj(Gu)) \ + 4/3*my_einsum("rtps,pt", C["quqd8"], np.conj(Gu))) \ + 2*(Eta1 \ + Eta2 \ + 1j*Eta5)*Gd \ + (C["phiD"] \ - 6*C["phiBox"])*Gd @ Gd.conj().T @ Gd \ + 2*C["phiq1"] @ Gd @ Gd.conj().T @ Gd \ + 6*C["phiq3"] @ Gu @ Gu.conj().T @ Gd \ - 2*Gd @ Gd.conj().T @ Gd @ C["phid"] \ - 2*Gu @ Gu.conj().T @ Gu @ C["phiud"] \ + 8*(my_einsum("rpts,pt", C["qd1"], Gd @ Gd.conj().T @ Gd) \ + 4/3*my_einsum("rpts,pt", C["qd8"], Gd @ Gd.conj().T @ Gd)) \ - 2*(my_einsum("rpts,pt", C["quqd1"], Gu.conj().T @ Gu @ Gu.conj().T) \ + 4/3*my_einsum("rpts,pt", C["quqd8"], Gu.conj().T @ Gu @ Gu.conj().T)) \ - 12*my_einsum("tprs,pt", C["quqd1"], Gu @ Gu.conj().T @ Gu) \ - 4*my_einsum("ptsr,pt", np.conj(C["ledq"]), Ge @ Ge.conj().T @ Ge) \ + 4*C["dphi"] @ Gd.conj().T @ Gd \ + 5*Gd @ Gd.conj().T @ C["dphi"] \ - 2*Gu @ C["uphi"].conj().T @ Gd \ - C["uphi"] @ Gu.conj().T @ Gd \ - 2*Gu @ Gu.conj().T @ C["dphi"] \ + 3*GammaH*C["dphi"] \ + Gammaq @ C["dphi"] \ + C["dphi"] @ Gammad #i Beta["ephi"] = (10/3*g**2*C["phiBox"] \ + 3/2*(gp**2 \ - g**2)*C["phiD"] \ + 9*g**2*(C["phiW"] \ + 1j*C["phiWtilde"]) \ + 15*gp**2*(C["phiB"] \ + 1j*C["phiBtilde"]) \ - 3*g*gp*(C["phiWB"] \ + 1j*C["phiWtildeB"]) \ + 4/3*g**2*(np.trace(C["phil3"]) \ + 3*np.trace(C["phiq3"])))*Ge \ - 3/4*(7*gp**2 \ + 9*g**2)*C["ephi"] \ - 3*gp*(g**2 \ - 3*gp**2)*C["eB"] \ - 9*g*(g**2 \ - gp**2)*C["eW"] \ + 3*(g**2 \ - gp**2)*Ge @ C["phie"] \ - 6*gp**2*C["phil1"] @ Ge \ - 6*gp**2*C["phil3"] @ Ge \ + 9*gp*(C["eB"] @ Ge.conj().T @ Ge \ + Ge @ Ge.conj().T @ C["eB"]) \ - 3*g*(C["eW"] @ Ge.conj().T @ Ge \ - Ge @ Ge.conj().T @ C["eW"]) \ + Lambda*(12*C["ephi"] \ + 2*C["phil1"] @ Ge \ + 6*C["phil3"] @ Ge \ - 2*Ge @ C["phie"] \ - 2*C["phiBox"]*Ge \ + C["phiD"]*Ge \ - 4*my_einsum("rpts,pt", C["le"], Ge) \ + 6*my_einsum("rspt,tp", C["ledq"], Gd) \ - 6*my_einsum("rspt,pt", C["lequ1"], np.conj(Gu))) \ + 2*(Eta1 \ + Eta2 \ + 1j*Eta5)*Ge \ + (C["phiD"] \ - 6*C["phiBox"])*Ge @ Ge.conj().T @ Ge \ + 2*C["phil1"] @ Ge @ Ge.conj().T @ Ge \ - 2*Ge @ Ge.conj().T @ Ge @ C["phie"] \ + 8*my_einsum("rpts,pt", C["le"], Ge @ Ge.conj().T @ Ge) \ - 12*my_einsum("rspt,tp", C["ledq"], Gd @ Gd.conj().T @ Gd) \ + 12*my_einsum("rstp,pt", C["lequ1"], Gu.conj().T @ Gu @ Gu.conj().T) \ + 4*C["ephi"] @ Ge.conj().T @ Ge \ + 5*Ge @ Ge.conj().T @ C["ephi"] \ + 3*GammaH*C["ephi"] \ + Gammal @ C["ephi"] \ + C["ephi"] @ Gammae #i Beta["eW"] = 1/12*(3*gp**2 \ - 11*g**2)*C["eW"] \ - 1/2*g*gp*C["eB"] \ - (g*(C["phiW"] \ + 1j*C["phiWtilde"]) \ - 3/2*gp*(C["phiWB"] \ + 1j*C["phiWtildeB"]))*Ge \ - 6*g*my_einsum("rspt,pt", C["lequ3"], np.conj(Gu)) \ + C["eW"] @ Ge.conj().T @ Ge \ + GammaH*C["eW"] \ + Gammal @ C["eW"] \ + C["eW"] @ Gammae #i Beta["eB"] = 1/4*(151/3*gp**2 \ - 9*g**2)*C["eB"] \ - 3/2*g*gp*C["eW"] \ - (3/2*g*(C["phiWB"] \ + 1j*C["phiWtildeB"]) \ - 3*gp*(C["phiB"] \ + 1j*C["phiBtilde"]))*Ge \ + 10*gp*my_einsum("rspt,pt", C["lequ3"], np.conj(Gu)) \ + C["eB"] @ Ge.conj().T @ Ge \ + 2*Ge @ Ge.conj().T @ C["eB"] \ + GammaH*C["eB"] \ + Gammal @ C["eB"] \ + C["eB"] @ Gammae #i Beta["uG"] = -1/36*(81*g**2 \ + 19*gp**2 \ + 204*gs**2)*C["uG"] \ + 6*g*gs*C["uW"] \ + 10/3*gp*gs*C["uB"] \ - gs*(4*(C["phiG"] \ + 1j*C["phiGtilde"]) \ - 9*gs*(C["G"] \ + 1j*C["Gtilde"]))*Gu \ - gs*(my_einsum("psrt,pt", C["quqd1"], np.conj(Gd)) \ - 1/6*my_einsum("psrt,pt", C["quqd8"], np.conj(Gd))) \ + 2*Gu @ Gu.conj().T @ C["uG"] \ - 2*Gd @ Gd.conj().T @ C["uG"] \ - C["dG"] @ Gd.conj().T @ Gu \ + C["uG"] @ Gu.conj().T @ Gu \ + GammaH*C["uG"] \ + Gammaq @ C["uG"] \ + C["uG"] @ Gammau #i Beta["uW"] = -1/36*(33*g**2 \ + 19*gp**2 \ - 96*gs**2)*C["uW"] \ + 8/3*g*gs*C["uG"] \ - 1/6*g*gp*C["uB"] \ - (g*(C["phiW"] \ + 1j*C["phiWtilde"]) \ - 5/6*gp*(C["phiWB"] \ + 1j*C["phiWtildeB"]))*Gu \ + g/4*(my_einsum("psrt,pt", C["quqd1"], np.conj(Gd)) \ + 4/3*my_einsum("psrt,pt", C["quqd8"], np.conj(Gd))) \ - 2*g*my_einsum("ptrs,pt", C["lequ3"], np.conj(Ge)) \ + 2*Gd @ Gd.conj().T @ C["uW"] \ - C["dW"] @ Gd.conj().T @ Gu \ + C["uW"] @ Gu.conj().T @ Gu \ + GammaH*C["uW"] \ + Gammaq @ C["uW"] \ + C["uW"] @ Gammau #i Beta["uB"] = -1/36*(81*g**2 \ - 313*gp**2 \ - 96*gs**2)*C["uB"] \ + 40/9*gp*gs*C["uG"] \ - 1/2*g*gp*C["uW"] \ - (-3/2*g*(C["phiWB"] \ + 1j*C["phiWtildeB"]) \ + 5/3*gp*(C["phiB"] \ + 1j*C["phiBtilde"]))*Gu \ + gp/12*(my_einsum("psrt,pt", C["quqd1"], np.conj(Gd)) \ + 4/3*my_einsum("psrt,pt", C["quqd8"], np.conj(Gd))) \ - 6*gp*my_einsum("ptrs,pt", C["lequ3"], np.conj(Ge)) \ + 2*Gu @ Gu.conj().T @ C["uB"] \ - 2*Gd @ Gd.conj().T @ C["uB"] \ - C["dB"] @ Gd.conj().T @ Gu \ + C["uB"] @ Gu.conj().T @ Gu \ + GammaH*C["uB"] \ + Gammaq @ C["uB"] \ + C["uB"] @ Gammau #i Beta["dG"] = -1/36*(81*g**2 \ + 31*gp**2 \ + 204*gs**2)*C["dG"] \ + 6*g*gs*C["dW"] \ - 2/3*gp*gs*C["dB"] \ - gs*(4*(C["phiG"] \ + 1j*C["phiGtilde"]) \ - 9*gs*(C["G"] \ + 1j*C["Gtilde"]))*Gd \ - gs*(my_einsum("rtps,pt", C["quqd1"], np.conj(Gu)) \ - 1/6*my_einsum("rtps,pt", C["quqd8"], np.conj(Gu))) \ - 2*Gu @ Gu.conj().T @ C["dG"] \ + 2*Gd @ Gd.conj().T @ C["dG"] \ - C["uG"] @ Gu.conj().T @ Gd \ + C["dG"] @ Gd.conj().T @ Gd \ + GammaH*C["dG"] \ + Gammaq @ C["dG"] \ + C["dG"] @ Gammad #i Beta["dW"] = -1/36*(33*g**2 \ + 31*gp**2 \ - 96*gs**2)*C["dW"] \ + 8/3*g*gs*C["dG"] \ + 5/6*g*gp*C["dB"] \ - (g*(C["phiW"] \ + 1j*C["phiWtilde"]) \ - gp/6*(C["phiWB"] \ + 1j*C["phiWtildeB"]))*Gd \ + g/4*(my_einsum("rtps,pt", C["quqd1"], np.conj(Gu)) \ + 4/3*my_einsum("rtps,pt", C["quqd8"], np.conj(Gu))) \ + 2*Gu @ Gu.conj().T @ C["dW"] \ - C["uW"] @ Gu.conj().T @ Gd \ + C["dW"] @ Gd.conj().T @ Gd \ + GammaH*C["dW"] \ + Gammaq @ C["dW"] \ + C["dW"] @ Gammad #i Beta["dB"] = -1/36*(81*g**2 \ - 253*gp**2 \ - 96*gs**2)*C["dB"] \ - 8/9*gp*gs*C["dG"] \ + 5/2*g*gp*C["dW"] \ - (3/2*g*(C["phiWB"] \ + 1j*C["phiWtildeB"]) \ - gp/3*(C["phiB"] \ + 1j*C["phiBtilde"]))*Gd \ - 5/12*gp*(my_einsum("rtps,pt", C["quqd1"], np.conj(Gu)) \ + 4/3*my_einsum("rtps,pt", C["quqd8"], np.conj(Gu))) \ - 2*Gu @ Gu.conj().T @ C["dB"] \ + 2*Gd @ Gd.conj().T @ C["dB"] \ - C["uB"] @ Gu.conj().T @ Gd \ + C["dB"] @ Gd.conj().T @ Gd \ + GammaH*C["dB"] \ + Gammaq @ C["dB"] \ + C["dB"] @ Gammad #I3 #coefficient not equal with manual!!!!!! Beta["phil1"] = -1/4*XiB*gp**2*I3 \ + 1/3*gp**2*C["phil1"] \ - 2/3*gp**2*(my_einsum("rstt", C["ld"]) \ + my_einsum("rstt", C["le"]) \ + 2*my_einsum("rstt", C["ll"]) \ + my_einsum("rtts", C["ll"]) \ - my_einsum("rstt", C["lq1"]) \ - 2*my_einsum("rstt", C["lu"])) \ - 1/2*(C["phiBox"] \ + C["phiD"])*Ge @ Ge.conj().T \ - Ge @ C["phie"] @ Ge.conj().T \ + 3/2*(Ge @ Ge.conj().T @ C["phil1"] \ + C["phil1"] @ Ge @ Ge.conj().T \ + 3*Ge @ Ge.conj().T @ C["phil3"] \ + 3*C["phil3"] @ Ge @ Ge.conj().T) \ + 2*my_einsum("rspt,tp", C["le"], Ge.conj().T @ Ge) \ - 2*(2*my_einsum("rspt,tp", C["ll"], Ge @ Ge.conj().T) \ + my_einsum("rtps,tp", C["ll"], Ge @ Ge.conj().T)) \ - 6*my_einsum("rspt,tp", C["lq1"], Gd @ Gd.conj().T) \ + 6*my_einsum("rspt,tp", C["lq1"], Gu @ Gu.conj().T) \ - 6*my_einsum("rspt,tp", C["lu"], Gu.conj().T @ Gu) \ + 6*my_einsum("rspt,tp", C["ld"], Gd.conj().T @ Gd) \ + 2*GammaH*C["phil1"] \ + Gammal @ C["phil1"] \ + C["phil1"] @ Gammal #I3 #coefficient Beta["phil3"] = 2/3*g**2*(1/4*C["phiBox"] \ + np.trace(C["phil3"]) \ + 3*np.trace(C["phiq3"]))*I3 \ - 17/3*g**2*C["phil3"] \ + 2/3*g**2*my_einsum("rtts", C["ll"]) \ + 2*g**2*my_einsum("rstt", C["lq3"]) \ - 1/2*C["phiBox"]*Ge @ Ge.conj().T \ + 1/2*(3*Ge @ Ge.conj().T @ C["phil1"] \ + 3*C["phil1"] @ Ge @ Ge.conj().T \ + Ge @ Ge.conj().T @ C["phil3"] \ + C["phil3"] @ Ge @ Ge.conj().T) \ - 2*(my_einsum("rtps,tp", C["ll"], Ge @ Ge.conj().T)) \ - 6*my_einsum("rspt,tp", C["lq3"], Gd @ Gd.conj().T) \ - 6*my_einsum("rspt,tp", C["lq3"], Gu @ Gu.conj().T) \ + 2*GammaH*C["phil3"] \ + Gammal @ C["phil3"] \ + C["phil3"] @ Gammal #I3 #coefficient even terms not equal... Beta["phie"] = -1/2*XiB*gp**2*I3 \ + 1/3*gp**2*C["phie"] \ - 2/3*gp**2*(my_einsum("rstt", C["ed"]) \ + 4*my_einsum("rstt", C["ee"]) \ - 2*my_einsum("rstt", C["eu"]) \ + my_einsum("ttrs", C["le"]) \ - my_einsum("ttrs", C["qe"])) \ + (C["phiBox"] \ + C["phiD"])*Ge.conj().T @ Ge \ - 2*Ge.conj().T @ C["phil1"] @ Ge \ + 3*(Ge.conj().T @ Ge @ C["phie"] \ + C["phie"] @ Ge.conj().T @ Ge) \ - 2*my_einsum("ptrs,tp", C["le"], Ge @ Ge.conj().T) \ + 8*my_einsum("rspt,tp", C["ee"], Ge.conj().T @ Ge) \ - 6*my_einsum("rspt,tp", C["eu"], Gu.conj().T @ Gu) \ + 6*my_einsum("rspt,tp", C["ed"], Gd.conj().T @ Gd) \ - 6*my_einsum("ptrs,tp", C["qe"], Gd @ Gd.conj().T) \ + 6*my_einsum("ptrs,tp", C["qe"], Gu @ Gu.conj().T) \ + 2*GammaH*C["phie"] \ + Gammae @ C["phie"] \ + C["phie"] @ Gammae #I3 #coefficient??? Beta["phiq1"] = 1/12*XiB*gp**2*I3 \ + 1/3*gp**2*C["phiq1"] \ - 2/3*gp**2*(my_einsum("ttrs", C["lq1"]) \ + my_einsum("rstt", C["qd1"]) \ - 2*my_einsum("rstt", C["qu1"]) \ + my_einsum("rstt", C["qe"]) \ - 2*my_einsum("rstt", C["qq1"]) \ - 1/3*my_einsum("rtts", C["qq1"]) \ - my_einsum("rtts", C["qq3"])) \ + 1/2*(C["phiBox"] \ + C["phiD"])*(Gu @ Gu.conj().T \ - Gd @ Gd.conj().T) \ - Gu @ C["phiu"] @ Gu.conj().T \ - Gd @ C["phid"] @ Gd.conj().T \ + 2*my_einsum("rspt,tp", C["qe"], Ge.conj().T @ Ge) \ - 2*my_einsum("ptrs,tp", C["lq1"], Ge @ Ge.conj().T) \ + 3/2*(Gd @ Gd.conj().T @ C["phiq1"] \ + Gu @ Gu.conj().T @ C["phiq1"] \ + C["phiq1"] @ Gd @ Gd.conj().T \ + C["phiq1"] @ Gu @ Gu.conj().T \ + 3*Gd @ Gd.conj().T @ C["phiq3"] \ - 3*Gu @ Gu.conj().T @ C["phiq3"] \ + 3*C["phiq3"] @ Gd @ Gd.conj().T \ - 3*C["phiq3"] @ Gu @ Gu.conj().T) \ - 2*(6*my_einsum("ptrs,tp", C["qq1"], Gd @ Gd.conj().T) \ + my_einsum("psrt,tp", C["qq1"], Gd @ Gd.conj().T) \ + 3*my_einsum("psrt,tp", C["qq3"], Gd @ Gd.conj().T) \ - 6*my_einsum("ptrs,tp", C["qq1"], Gu @ Gu.conj().T) \ - my_einsum("psrt,tp", C["qq1"], Gu @ Gu.conj().T) \ - 3*my_einsum("psrt,tp", C["qq3"], Gu @ Gu.conj().T)) \ - 6*my_einsum("rspt,tp", C["qu1"], Gu.conj().T @ Gu) \ + 6*my_einsum("rspt,tp", C["qd1"], Gd.conj().T @ Gd) \ + 2*GammaH*C["phiq1"] \ + Gammaq @ C["phiq1"] \ + C["phiq1"] @ Gammaq #I3 #co Beta["phiq3"] = 2/3*g**2*(1/4*C["phiBox"] \ + np.trace(C["phil3"]) \ + 3*np.trace(C["phiq3"]))*I3 \ - 17/3*g**2*C["phiq3"] \ + 2/3*g**2*(my_einsum("ttrs", C["lq3"]) \ + my_einsum("rtts", C["qq1"]) \ + 6*my_einsum("rstt", C["qq3"]) \ - my_einsum("rtts", C["qq3"])) \ - 1/2*C["phiBox"]*(Gu @ Gu.conj().T \ + Gd @ Gd.conj().T) \ + 1/2*(3*Gd @ Gd.conj().T @ C["phiq1"] \ - 3*Gu @ Gu.conj().T @ C["phiq1"] \ + 3*C["phiq1"] @ Gd @ Gd.conj().T \ - 3*C["phiq1"] @ Gu @ Gu.conj().T \ + Gd @ Gd.conj().T @ C["phiq3"] \ + Gu @ Gu.conj().T @ C["phiq3"] \ + C["phiq3"] @ Gd @ Gd.conj().T \ + C["phiq3"] @ Gu @ Gu.conj().T) \ - 2*(6*my_einsum("rspt,tp", C["qq3"], Gd @ Gd.conj().T) \ + my_einsum("rtps,tp", C["qq1"], Gd @ Gd.conj().T) \ - my_einsum("rtps,tp", C["qq3"], Gd @ Gd.conj().T) \ + 6*my_einsum("rspt,tp", C["qq3"], Gu @ Gu.conj().T) \ + my_einsum("rtps,tp", C["qq1"], Gu @ Gu.conj().T) \ - my_einsum("rtps,tp", C["qq3"], Gu @ Gu.conj().T)) \ - 2*my_einsum("ptrs,tp", C["lq3"], Ge @ Ge.conj().T) \ + 2*GammaH*C["phiq3"] \ + Gammaq @ C["phiq3"] \ + C["phiq3"] @ Gammaq #I3 #co Beta["phiu"] = 1/3*XiB*gp**2*I3 \ + 1/3*gp**2*C["phiu"] \ - 2/3*gp**2*(my_einsum("ttrs", C["eu"]) \ + my_einsum("ttrs", C["lu"]) \ - my_einsum("ttrs", C["qu1"]) \ + my_einsum("rstt", C["ud1"]) \ - 4*my_einsum("rstt", C["uu"]) \ - 4/3*my_einsum("rtts", C["uu"])) \ - (C["phiBox"] \ + C["phiD"])*Gu.conj().T @ Gu \ - 2*Gu.conj().T @ C["phiq1"] @ Gu \ + 3*(Gu.conj().T @ Gu @ C["phiu"] \ + C["phiu"] @ Gu.conj().T @ Gu) \ + Gu.conj().T @ Gd @ C["phiud"].conj().T \ + C["phiud"] @ Gd.conj().T @ Gu \ - 4*(3*my_einsum("rspt,tp", C["uu"], Gu.conj().T @ Gu) \ + my_einsum("rtps,tp", C["uu"], Gu.conj().T @ Gu)) \ + 2*my_einsum("ptrs,tp", C["eu"], Ge.conj().T @ Ge) \ - 2*my_einsum("ptrs,tp", C["lu"], Ge @ Ge.conj().T) \ + 6*my_einsum("rspt,tp", C["ud1"], Gd.conj().T @ Gd) \ - 6*my_einsum("ptrs,tp", C["qu1"], Gd @ Gd.conj().T) \ + 6*my_einsum("ptrs,tp", C["qu1"], Gu @ Gu.conj().T) \ + 2*GammaH*C["phiu"] \ + Gammau @ C["phiu"] \ + C["phiu"] @ Gammau #I3 #co Beta["phid"] = -1/6*XiB*gp**2*I3 \ + 1/3*gp**2*C["phid"] \ - 2/3*gp**2*(2*my_einsum("rstt", C["dd"]) \ + 2/3*my_einsum("rtts", C["dd"]) \ + my_einsum("ttrs", C["ed"]) \ + my_einsum("ttrs", C["ld"]) \ - my_einsum("ttrs", C["qd1"]) \ - 2*my_einsum("ttrs", C["ud1"])) \ + (C["phiBox"] \ + C["phiD"])*Gd.conj().T @ Gd \ - 2*Gd.conj().T @ C["phiq1"] @ Gd \ + 3*(Gd.conj().T @ Gd @ C["phid"] \ + C["phid"] @ Gd.conj().T @ Gd) \ - Gd.conj().T @ Gu @ C["phiud"] \ - C["phiud"].conj().T @ Gu.conj().T @ Gd \ + 4*(3*my_einsum("rspt,tp", C["dd"], Gd.conj().T @ Gd) \ + my_einsum("rtps,tp", C["dd"], Gd.conj().T @ Gd)) \ + 2*my_einsum("ptrs,tp", C["ed"], Ge.conj().T @ Ge) \ - 2*my_einsum("ptrs,tp", C["ld"], Ge @ Ge.conj().T) \ - 6*my_einsum("ptrs,tp", C["ud1"], Gu.conj().T @ Gu) \ - 6*my_einsum("ptrs,tp", C["qd1"], Gd @ Gd.conj().T) \ + 6*my_einsum("ptrs,tp", C["qd1"], Gu @ Gu.conj().T) \ + 2*GammaH*C["phid"] \ + Gammad @ C["phid"] \ + C["phid"] @ Gammad #co Beta["phiud"] = -3*gp**2*C["phiud"] \ + (2*C["phiBox"] \ - C["phiD"])*Gu.conj().T @ Gd \ - 2*Gu.conj().T @ Gd @ C["phid"] \ + 2*C["phiu"] @ Gu.conj().T @ Gd \ + 4*(my_einsum("rtps,tp", C["ud1"], Gu.conj().T @ Gd) \ + 4/3*my_einsum("rtps,tp", C["ud8"], Gu.conj().T @ Gd)) \ + 2*Gu.conj().T @ Gu @ C["phiud"] \ + 2*C["phiud"] @ Gd.conj().T @ Gd \ + 2*GammaH*C["phiud"] \ + Gammau @ C["phiud"] \ + C["phiud"] @ Gammad """Dimension-5""" Beta["llphiphi"] = (2*Lambda \ - 3*g**2 \ + 2*GammaH)*C["llphiphi"]-3/2*(C["llphiphi"] @ Ge @ Ge.conj().T \ + Ge.conj() @ Ge.T @ C["llphiphi"]) """(3,3,3,3)""" # the einsum function is strong Beta["ll"] = -1/6*gp**2*my_einsum("st,pr", C["phil1"], I3) \ - 1/6*g**2*(my_einsum("st,pr", C["phil3"], I3) \ - 2*my_einsum("sr,pt", C["phil3"], I3)) \ + 1/3*gp**2*(2*my_einsum("prww,st", C["ll"], I3) \ + my_einsum("pwwr,st", C["ll"], I3)) \ - 1/3*g**2*my_einsum("pwwr,st", C["ll"], I3) \ + 2/3*g**2*my_einsum("swwr,pt", C["ll"], I3) \ - 1/3*gp**2*my_einsum("prww,st", C["lq1"], I3) \ - g**2*my_einsum("prww,st", C["lq3"], I3) \ + 2*g**2*my_einsum("ptww,rs", C["lq3"], I3) \ + 1/3*gp**2*( \ - 2*my_einsum("prww,st", C["lu"], I3) \ + my_einsum("prww,st", C["ld"], I3) \ + my_einsum("prww,st", C["le"], I3)) \ - 1/2*(my_einsum("pr,st", Ge @ Ge.conj().T, C["phil1"]) \ - my_einsum("pr,st", Ge @ Ge.conj().T, C["phil3"])) \ - my_einsum("pt,sr", Ge @ Ge.conj().T, C["phil3"]) \ - 1/2*my_einsum("sv,tw,prvw", Ge, np.conj(Ge), C["le"]) \ + my_einsum("pv,vrst", Gammal, C["ll"]) \ + my_einsum("pvst,vr", C["ll"], Gammal) \ - 1/6*gp**2*my_einsum("pr,st", C["phil1"], I3) \ - 1/6*g**2*(my_einsum("pr,st", C["phil3"], I3) \ - 2*my_einsum("pt,sr", C["phil3"], I3)) \ + 1/3*gp**2*(2*my_einsum("stww,pr", C["ll"], I3) \ + my_einsum("swwt,pr", C["ll"], I3)) \ - 1/3*g**2*my_einsum("swwt,pr", C["ll"], I3) \ + 2/3*g**2*my_einsum("pwwt,sr", C["ll"], I3) \ - 1/3*gp**2*my_einsum("stww,pr", C["lq1"], I3) \ - g**2*my_einsum("stww,pr", C["lq3"], I3) \ + 2*g**2*my_einsum("srww,tp", C["lq3"], I3) \ + 1/3*gp**2*( \ - 2*my_einsum("stww,pr", C["lu"], I3) \ + my_einsum("stww,pr", C["ld"], I3) \ + my_einsum("stww,pr", C["le"], I3)) \ - 1/2*(my_einsum("st,pr", Ge @ Ge.conj().T, C["phil1"]) \ - my_einsum("st,pr", Ge @ Ge.conj().T, C["phil3"])) \ - my_einsum("sr,pt", Ge @ Ge.conj().T, C["phil3"]) \ - 1/2*my_einsum("pv,rw,stvw", Ge, np.conj(Ge), C["le"]) \ + my_einsum("sv,vtpr", Gammal, C["ll"]) \ + my_einsum("svpr,vt", C["ll"], Gammal) \ + 6*g**2*my_einsum("ptsr", C["ll"]) \ + 3*(gp**2 \ - g**2)*my_einsum("prst", C["ll"]) Beta["qq1"] = 1/18*gp**2*my_einsum("st,pr", C["phiq1"], I3) \ - 1/9*gp**2*my_einsum("wwst,pr", C["lq1"], I3) \ + 1/9*gp**2*(2*my_einsum("prww,st", C["qq1"], I3) \ + 1/3*(my_einsum("pwwr,st", C["qq1"], I3) \ + 3*my_einsum("pwwr,st", C["qq3"], I3))) \ + 1/3*gs**2*(my_einsum("swwr,pt", C["qq1"], I3) \ + 3*my_einsum("swwr,pt", C["qq3"], I3)) \ - 2/9*gs**2*(my_einsum("pwwr,st", C["qq1"], I3) \ + 3*my_einsum("pwwr,st", C["qq3"], I3)) \ + 2/9*gp**2*my_einsum("prww,st", C["qu1"], I3) \ - 1/9*gp**2*my_einsum("prww,st", C["qd1"], I3) \ + 1/12*gs**2*(my_einsum("srww,pt", C["qu8"], I3) \ + my_einsum("srww,pt", C["qd8"], I3)) \ - 1/18*gs**2*(my_einsum("prww,st", C["qu8"], I3) \ + my_einsum("prww,st", C["qd8"], I3)) \ - 1/9*gp**2*my_einsum("prww,st", C["qe"], I3) \ + 1/2*(my_einsum("pr,st", Gu @ Gu.conj().T, C["phiq1"]) \ - my_einsum("pr,st", Gd @ Gd.conj().T, C["phiq1"])) \ - 1/2*(my_einsum("pv,rw,stvw", Gu, np.conj(Gu), C["qu1"]) \ - 1/6*my_einsum("pv,rw,stvw", Gu, np.conj(Gu), C["qu8"])) \ - 1/2*(my_einsum("pv,rw,stvw", Gd, np.conj(Gd), C["qd1"]) \ - 1/6*my_einsum("pv,rw,stvw", Gd, np.conj(Gd), C["qd8"])) \ - 1/8*(my_einsum("pv,tw,srvw", Gu, np.conj(Gu), C["qu8"]) \ + my_einsum("pv,tw,srvw", Gd, np.conj(Gd), C["qd8"])) \ - 1/8*(my_einsum("tw,rv,pvsw", np.conj(Gd), np.conj(Gu), C["quqd1"]) \ - 1/6*my_einsum("tw,rv,pvsw", np.conj(Gd), np.conj(Gu), C["quqd8"])) \ - 1/8*(my_einsum("sw,pv,rvtw", Gd, Gu, np.conj(C["quqd1"])) \ - 1/6*my_einsum("sw,pv,rvtw", Gd, Gu, np.conj(C["quqd8"]))) \ + 1/16*(my_einsum("tw,rv,svpw", np.conj(Gd), np.conj(Gu), C["quqd8"]) \ + my_einsum("sw,pv,tvrw", Gd, Gu, np.conj(C["quqd8"]))) \ + my_einsum("pv,vrst", Gammaq, C["qq1"]) \ + my_einsum("pvst,vr", C["qq1"], Gammaq) \ + 1/18*gp**2*my_einsum("pr,st", C["phiq1"], I3) \ - 1/9*gp**2*my_einsum("wwpr,st", C["lq1"], I3) \ + 1/9*gp**2*(2*my_einsum("stww,pr", C["qq1"], I3) \ + 1/3*(my_einsum("swwt,pr", C["qq1"], I3) \ + 3*my_einsum("swwt,pr", C["qq3"], I3))) \ + 1/3*gs**2*(my_einsum("pwwt,sr", C["qq1"], I3) \ + 3*my_einsum("pwwt,sr", C["qq3"], I3)) \ - 2/9*gs**2*(my_einsum("swwt,pr", C["qq1"], I3) \ + 3*my_einsum("swwt,pr", C["qq3"], I3)) \ + 2/9*gp**2*my_einsum("stww,pr", C["qu1"], I3) \ - 1/9*gp**2*my_einsum("stww,pr", C["qd1"], I3) \ + 1/12*gs**2*(my_einsum("ptww,sr", C["qu8"], I3) \ + my_einsum("ptww,sr", C["qd8"], I3)) \ - 1/18*gs**2*(my_einsum("stww,pr", C["qu8"], I3) \ + my_einsum("stww,pr", C["qd8"], I3)) \ - 1/9*gp**2*my_einsum("stww,pr", C["qe"], I3) \ + 1/2*(my_einsum("st,pr", Gu @ Gu.conj().T, C["phiq1"]) \ - my_einsum("st,pr", Gd @ Gd.conj().T, C["phiq1"])) \ - 1/2*(my_einsum("sv,tw,prvw", Gu, np.conj(Gu), C["qu1"]) \ - 1/6*my_einsum("sv,tw,prvw", Gu, np.conj(Gu), C["qu8"])) \ - 1/2*(my_einsum("sv,tw,prvw", Gd, np.conj(Gd), C["qd1"]) \ - 1/6*my_einsum("sv,tw,prvw", Gd, np.conj(Gd), C["qd8"])) \ - 1/8*(my_einsum("sv,rw,ptvw", Gu, np.conj(Gu), C["qu8"]) \ + my_einsum("sv,rw,ptvw", Gd, np.conj(Gd), C["qd8"])) \ - 1/8*(my_einsum("rw,tv,svpw", np.conj(Gd), np.conj(Gu), C["quqd1"]) \ - 1/6*my_einsum("rw,tv,svpw", np.conj(Gd), np.conj(Gu), C["quqd8"])) \ - 1/8*(my_einsum("pw,sv,tvrw", Gd, Gu, np.conj(C["quqd1"])) \ - 1/6*my_einsum("pw,sv,tvrw", Gd, Gu, np.conj(C["quqd8"]))) \ + 1/16*(my_einsum("rw,tv,pvsw", np.conj(Gd), np.conj(Gu), C["quqd8"]) \ + my_einsum("pw,sv,rvtw", Gd, Gu, np.conj(C["quqd8"]))) \ + my_einsum("sv,vtpr", Gammaq, C["qq1"]) \ + my_einsum("svpr,vt", C["qq1"], Gammaq) \ + 9*g**2*my_einsum("prst", C["qq3"]) \ - 2*(gs**2 \ - 1/6*gp**2)*my_einsum("prst", C["qq1"]) \ + 3*gs**2*(my_einsum("ptsr", C["qq1"]) \ + 3*my_einsum("ptsr", C["qq3"])) Beta["qq3"] = 1/6*g**2*my_einsum("st,pr", C["phiq3"], I3) \ + 1/3*g**2*my_einsum("wwst,pr", C["lq3"], I3) \ + 1/3*g**2*(my_einsum("pwwr,st", C["qq1"], I3) \ - my_einsum("pwwr,st", C["qq3"], I3)) \ + 2*g**2*my_einsum("prww,st", C["qq3"], I3) \ + 1/3*gs**2*(my_einsum("swwr,pt", C["qq1"], I3) \ + 3*my_einsum("swwr,pt", C["qq3"], I3)) \ + 1/12*gs**2*(my_einsum("srww,pt", C["qu8"], I3) \ + my_einsum("srww,pt", C["qd8"], I3)) \ - 1/2*(my_einsum("pr,st", Gu @ Gu.conj().T, C["phiq3"]) \ + my_einsum("pr,st", Gd @ Gd.conj().T, C["phiq3"])) \ - 1/8*(my_einsum("pv,tw,srvw", Gu, np.conj(Gu), C["qu8"]) \ + my_einsum("pv,tw,srvw", Gd, np.conj(Gd), C["qd8"])) \ + 1/8*(my_einsum("tw,rv,pvsw", np.conj(Gd), np.conj(Gu), C["quqd1"]) \ - 1/6*my_einsum("tw,rv,pvsw", np.conj(Gd), np.conj(Gu), C["quqd8"])) \ + 1/8*(my_einsum("sw,pv,rvtw", Gd, Gu, np.conj(C["quqd1"])) \ - 1/6*my_einsum("sw,pv,rvtw", Gd, Gu, np.conj(C["quqd8"]))) \ - 1/16*(my_einsum("tw,rv,svpw", np.conj(Gd), np.conj(Gu), C["quqd8"]) \ + my_einsum("sw,pv,tvrw", Gd, Gu, np.conj(C["quqd8"]))) \ + my_einsum("pv,vrst", Gammaq, C["qq3"]) \ + my_einsum("pvst,vr", C["qq3"], Gammaq) \ + 1/6*g**2*my_einsum("pr,st", C["phiq3"], I3) \ + 1/3*g**2*my_einsum("wwpr,st", C["lq3"], I3) \ + 1/3*g**2*(my_einsum("swwt,pr", C["qq1"], I3) \ - my_einsum("swwt,pr", C["qq3"], I3)) \ + 2*g**2*my_einsum("stww,pr", C["qq3"], I3) \ + 1/3*gs**2*(my_einsum("pwwt,sr", C["qq1"], I3) \ + 3*my_einsum("pwwt,sr", C["qq3"], I3)) \ + 1/12*gs**2*(my_einsum("ptww,sr", C["qu8"], I3) \ + my_einsum("ptww,sr", C["qd8"], I3)) \ - 1/2*(my_einsum("st,pr", Gu @ Gu.conj().T, C["phiq3"]) \ + my_einsum("st,pr", Gd @ Gd.conj().T, C["phiq3"])) \ - 1/8*(my_einsum("sv,rw,ptvw", Gu, np.conj(Gu), C["qu8"]) \ + my_einsum("sv,rw,ptvw", Gd, np.conj(Gd), C["qd8"])) \ + 1/8*(my_einsum("rw,tv,svpw", np.conj(Gd), np.conj(Gu), C["quqd1"]) \ - 1/6*my_einsum("rw,tv,svpw", np.conj(Gd), np.conj(Gu), C["quqd8"])) \ + 1/8*(my_einsum("pw,sv,tvrw", Gd, Gu, np.conj(C["quqd1"])) \ - 1/6*my_einsum("pw,sv,tvrw", Gd, Gu, np.conj(C["quqd8"]))) \ - 1/16*(my_einsum("rw,tv,pvsw", np.conj(Gd), np.conj(Gu), C["quqd8"]) \ + my_einsum("pw,sv,rvtw", Gd, Gu, np.conj(C["quqd8"]))) \ + my_einsum("sv,vtpr", Gammaq, C["qq3"]) \ + my_einsum("svpr,vt", C["qq3"], Gammaq) \ + 3*gs**2*(my_einsum("ptsr", C["qq1"]) \ - my_einsum("ptsr", C["qq3"])) \ - 2*(gs**2 \ + 3*g**2 \ - 1/6*gp**2)*my_einsum("prst", C["qq3"]) \ + 3*g**2*my_einsum("prst", C["qq1"]) #the terms are equal, but the order is not. No wonder if you check some differences inside Beta["lq1"] = -1/3*gp**2*my_einsum("st,pr", C["phiq1"], I3) \ + 1/9*gp**2*my_einsum("pr,st", C["phil1"], I3) \ - 2/9*gp**2*(2*my_einsum("prww,st", C["ll"], I3) \ + my_einsum("pwwr,st", C["ll"], I3)) \ + 2/9*gp**2*my_einsum("prww,st", C["lq1"], I3) \ + 2/3*gp**2*my_einsum("wwst,pr", C["lq1"], I3) \ - 2/9*gp**2*(6*my_einsum("stww,pr", C["qq1"], I3) \ + my_einsum("swwt,pr", C["qq1"], I3) \ + 3*my_einsum("swwt,pr", C["qq3"], I3)) \ - 2/3*gp**2*(2*my_einsum("stww,pr", C["qu1"], I3) \ - my_einsum("stww,pr", C["qd1"], I3) \ - my_einsum("stww,pr", C["qe"], I3)) \ + 2/9*gp**2*(2*my_einsum("prww,st", C["lu"], I3) \ - my_einsum("prww,st", C["ld"], I3) \ - my_einsum("prww,st", C["le"], I3)) \ - gp**2*my_einsum("prst", C["lq1"]) \ + 9*g**2*my_einsum("prst", C["lq3"]) \ - my_einsum("pr,st", Ge @ Ge.conj().T, C["phiq1"]) \ + my_einsum("st,pr", Gu @ Gu.conj().T, C["phil1"]) \ - my_einsum("st,pr", Gd @ Gd.conj().T, C["phil1"]) \ + 1/4*(my_einsum("tw,rv,pvsw", np.conj(Gu), np.conj(Ge), C["lequ1"]) \ - 12*my_einsum("tw,rv,pvsw", np.conj(Gu), np.conj(Ge), C["lequ3"]) \ + my_einsum("sw,pv,rvtw", Gu, Ge, np.conj(C["lequ1"])) \ - 12*my_einsum("sw,pv,rvtw", Gu, Ge, np.conj(C["lequ3"]))) \ - my_einsum("sv,tw,prvw", Gu, np.conj(Gu), C["lu"]) \ - my_einsum("sv,tw,prvw", Gd, np.conj(Gd), C["ld"]) \ - my_einsum("pv,rw,stvw", Ge, np.conj(Ge), C["qe"]) \ + 1/4*(my_einsum("sw,rv,pvwt", Gd, np.conj(Ge), C["ledq"]) \ + my_einsum("pv,tw,rvws", Ge, np.conj(Gd), np.conj(C["ledq"]))) \ + my_einsum("pv,vrst", Gammal, C["lq1"]) \ + my_einsum("sv,prvt", Gammaq, C["lq1"]) \ + my_einsum("pvst,vr", C["lq1"], Gammal) \ + my_einsum("prsv,vt", C["lq1"], Gammaq) Beta["lq3"] = 1/3*g**2*(my_einsum("st,pr", C["phiq3"], I3) \ + my_einsum("pr,st", C["phil3"], I3)) \ + 2/3*g**2*(3*my_einsum("prww,st", C["lq3"], I3) \ + my_einsum("wwst,pr", C["lq3"], I3)) \ + 2/3*g**2*(6*my_einsum("stww,pr", C["qq3"], I3) \ + my_einsum("swwt,pr", C["qq1"], I3) \ - my_einsum("swwt,pr", C["qq3"], I3)) \ + 2/3*g**2*my_einsum("pwwr,st", C["ll"], I3) \ + 3*g**2*my_einsum("prst", C["lq1"]) \ - (6*g**2 \ + gp**2)*my_einsum("prst", C["lq3"]) \ - my_einsum("pr,st", Ge @ Ge.conj().T, C["phiq3"]) \ - my_einsum("st,pr", Gu @ Gu.conj().T, C["phil3"]) \ - my_einsum("st,pr", Gd @ Gd.conj().T, C["phil3"]) \ - 1/4*(my_einsum("tw,rv,pvsw", np.conj(Gu), np.conj(Ge), C["lequ1"]) \ - 12*my_einsum("tw,rv,pvsw", np.conj(Gu), np.conj(Ge), C["lequ3"]) \ + my_einsum("sw,pv,rvtw", Gu, Ge, np.conj(C["lequ1"])) \ - 12*my_einsum("sw,pv,rvtw", Gu, Ge, np.conj(C["lequ3"]))) \ + 1/4*(my_einsum("sw,rv,pvwt", Gd, np.conj(Ge), C["ledq"]) \ + my_einsum("pv,tw,rvws", Ge, np.conj(Gd), np.conj(C["ledq"]))) \ + my_einsum("pv,vrst", Gammal, C["lq3"]) \ + my_einsum("sv,prvt", Gammaq, C["lq3"]) \ + my_einsum("pvst,vr", C["lq3"], Gammal) \ + my_einsum("prsv,vt", C["lq3"], Gammaq) #order Beta["ee"] = -1/3*gp**2*my_einsum("st,pr", C["phie"], I3) \ + 2/3*gp**2*(my_einsum("wwpr,st", C["le"], I3) \ - my_einsum("wwpr,st", C["qe"], I3) \ - 2*my_einsum("prww,st", C["eu"], I3) \ + my_einsum("prww,st", C["ed"], I3) \ + 4*my_einsum("prww,st", C["ee"], I3)) \ + my_einsum("pr,st", Ge.conj().T @ Ge, C["phie"]) \ - my_einsum("wr,vp,vwst", Ge, np.conj(Ge), C["le"]) \ + my_einsum("pv,vrst", Gammae, C["ee"]) \ + my_einsum("pvst,vr", C["ee"], Gammae) \ - 1/3*gp**2*my_einsum("pr,st", C["phie"], I3) \ + 2/3*gp**2*(my_einsum("wwst,pr", C["le"], I3) \ - my_einsum("wwst,pr", C["qe"], I3) \ - 2*my_einsum("stww,pr", C["eu"], I3) \ + my_einsum("stww,pr", C["ed"], I3) \ + 4*my_einsum("wwst,pr", C["ee"], I3)) \ + my_einsum("st,pr", Ge.conj().T @ Ge, C["phie"]) \ - my_einsum("wt,vs,vwpr", Ge, np.conj(Ge), C["le"]) \ + my_einsum("sv,vtpr", Gammae, C["ee"]) \ + my_einsum("svpr,vt", C["ee"], Gammae) \ + 12*gp**2*my_einsum("prst", C["ee"]) #order Beta["uu"] = 2/9*gp**2*my_einsum("st,pr", C["phiu"], I3) \ - 4/9*gp**2*(my_einsum("wwst,pr", C["eu"], I3) \ + my_einsum("wwst,pr", C["lu"], I3) \ - my_einsum("wwst,pr", C["qu1"], I3) \ - 4*my_einsum("wwst,pr", C["uu"], I3) \ - 4/3*my_einsum("swwt,pr", C["uu"], I3)) \ - 1/9*gs**2*(my_einsum("wwst,pr", C["qu8"], I3) \ - 3*my_einsum("wwsr,pt", C["qu8"], I3)) \ + 2/3*gs**2*my_einsum("pwwt,rs", C["uu"], I3) \ - 2/9*gs**2*my_einsum("swwt,pr", C["uu"], I3) \ - 4/9*gp**2*my_einsum("stww,pr", C["ud1"], I3) \ - 1/18*gs**2*(my_einsum("stww,pr", C["ud8"], I3) \ - 3*my_einsum("srww,pt", C["ud8"], I3)) \ - my_einsum("pr,st", Gu.conj().T @ Gu, C["phiu"]) \ - (my_einsum("wr,vp,vwst", Gu, np.conj(Gu), C["qu1"]) \ - 1/6*my_einsum("wr,vp,vwst", Gu, np.conj(Gu), C["qu8"])) \ - 1/2*my_einsum("wr,vs,vwpt", Gu, np.conj(Gu), C["qu8"]) \ + my_einsum("pv,vrst", Gammau, C["uu"]) \ + my_einsum("pvst,vr", C["uu"], Gammau) \ + 2/9*gp**2*my_einsum("pr,st", C["phiu"], I3) \ - 4/9*gp**2*(my_einsum("wwpr,st", C["eu"], I3) \ + my_einsum("wwpr,st", C["lu"], I3) \ - my_einsum("wwpr,st", C["qu1"], I3) \ - 4*my_einsum("wwpr,st", C["uu"], I3) \ - 4/3*my_einsum("pwwr,st", C["uu"], I3)) \ - 1/9*gs**2*(my_einsum("wwpr,st", C["qu8"], I3) \ - 3*my_einsum("wwpt,sr", C["qu8"], I3)) \ + 2/3*gs**2*my_einsum("swwr,tp", C["uu"], I3) \ - 2/9*gs**2*my_einsum("pwwr,st", C["uu"], I3) \ - 4/9*gp**2*my_einsum("prww,st", C["ud1"], I3) \ - 1/18*gs**2*(my_einsum("prww,st", C["ud8"], I3) \ - 3*my_einsum("ptww,sr", C["ud8"], I3)) \ - my_einsum("st,pr", Gu.conj().T @ Gu, C["phiu"]) \ - (my_einsum("wt,vs,vwpr", Gu, np.conj(Gu), C["qu1"]) \ - 1/6*my_einsum("wt,vs,vwpr", Gu, np.conj(Gu), C["qu8"])) \ - 1/2*my_einsum("wt,vp,vwsr", Gu, np.conj(Gu), C["qu8"]) \ + my_einsum("sv,vtpr", Gammau, C["uu"]) \ + my_einsum("svpr,vt", C["uu"], Gammau) \ + 2*(8/3*gp**2 \ - gs**2)*my_einsum("prst", C["uu"]) \ + 6*gs**2*my_einsum("ptsr", C["uu"]) #order Beta["dd"] = -1/9*gp**2*my_einsum("st,pr", C["phid"], I3) \ + 2/9*gp**2*(my_einsum("wwst,pr", C["ed"], I3) \ + my_einsum("wwst,pr", C["ld"], I3) \ - my_einsum("wwst,pr", C["qd1"], I3) \ + 2*my_einsum("wwst,pr", C["dd"], I3) \ + 2/3*my_einsum("swwt,pr", C["dd"], I3)) \ - 1/9*gs**2*(my_einsum("wwst,pr", C["qd8"], I3) \ - 3*my_einsum("wwsr,pt", C["qd8"], I3)) \ + 2/3*gs**2*my_einsum("pwwt,rs", C["dd"], I3) \ - 2/9*gs**2*my_einsum("swwt,pr", C["dd"], I3) \ - 4/9*gp**2*my_einsum("wwst,pr", C["ud1"], I3) \ - 1/18*gs**2*(my_einsum("wwst,pr", C["ud8"], I3) \ - 3*my_einsum("wwsr,pt", C["ud8"], I3)) \ + my_einsum("pr,st", Gd.conj().T @ Gd, C["phid"]) \ - (my_einsum("wr,vp,vwst", Gd, np.conj(Gd), C["qd1"]) \ - 1/6*my_einsum("wr,vp,vwst", Gd, np.conj(Gd), C["qd8"])) \ - 1/2*my_einsum("wr,vs,vwpt", Gd, np.conj(Gd), C["qd8"]) \ + my_einsum("pv,vrst", Gammad, C["dd"]) \ + my_einsum("pvst,vr", C["dd"], Gammad) \ - 1/9*gp**2*my_einsum("pr,st", C["phid"], I3) \ + 2/9*gp**2*(my_einsum("wwpr,st", C["ed"], I3) \ + my_einsum("wwpr,st", C["ld"], I3) \ - my_einsum("wwpr,st", C["qd1"], I3) \ + 2*my_einsum("wwpr,st", C["dd"], I3) \ + 2/3*my_einsum("pwwr,st", C["dd"], I3)) \ - 1/9*gs**2*(my_einsum("wwpr,st", C["qd8"], I3) \ - 3*my_einsum("wwpt,sr", C["qd8"], I3)) \ + 2/3*gs**2*my_einsum("swwr,tp", C["dd"], I3) \ - 2/9*gs**2*my_einsum("pwwr,st", C["dd"], I3) \ - 4/9*gp**2*my_einsum("wwpr,st", C["ud1"], I3) \ - 1/18*gs**2*(my_einsum("wwpr,st", C["ud8"], I3) \ - 3*my_einsum("wwpt,sr", C["ud8"], I3)) \ + my_einsum("st,pr", Gd.conj().T @ Gd, C["phid"]) \ - (my_einsum("wt,vs,vwpr", Gd, np.conj(Gd), C["qd1"]) \ - 1/6*my_einsum("wt,vs,vwpr", Gd, np.conj(Gd), C["qd8"])) \ - 1/2*my_einsum("wt,vp,vwsr", Gd, np.conj(Gd), C["qd8"]) \ + my_einsum("sv,vtpr", Gammad, C["dd"]) \ + my_einsum("svpr,vt", C["dd"], Gammad) \ + 2*(2/3*gp**2 \ - gs**2)*my_einsum("prst", C["dd"]) \ + 6*gs**2*my_einsum("ptsr", C["dd"]) Beta["eu"] = -2/3*gp**2*(my_einsum("st,pr", C["phiu"], I3) \ + 2*(my_einsum("wwst,pr", C["qu1"], I3) \ - my_einsum("wwst,pr", C["lu"], I3) \ + 4*my_einsum("wwst,pr", C["uu"], I3) \ - my_einsum("wwst,pr", C["eu"], I3) \ - my_einsum("stww,pr", C["ud1"], I3)) \ + 8/3*my_einsum("swwt,pr", C["uu"], I3)) \ + 4/9*gp**2*(my_einsum("pr,st", C["phie"], I3) \ + 2*(my_einsum("wwpr,st", C["qe"], I3) \ - my_einsum("wwpr,st", C["le"], I3) \ - 4*my_einsum("prww,st", C["ee"], I3) \ + 2*my_einsum("prww,st", C["eu"], I3) \ - my_einsum("prww,st", C["ed"], I3))) \ - 8*gp**2*my_einsum("prst", C["eu"]) \ + 2*my_einsum("pr,st", Ge.conj().T @ Ge, C["phiu"]) \ - 2*my_einsum("st,pr", Gu.conj().T @ Gu, C["phie"]) \ + my_einsum("vp,ws,vrwt", np.conj(Ge), np.conj(Gu), C["lequ1"]) \ - 12*my_einsum("vp,ws,vrwt", np.conj(Ge), np.conj(Gu), C["lequ3"]) \ + my_einsum("vr,wt,vpws", Ge, Gu, np.conj(C["lequ1"])) \ - 12*my_einsum("vr,wt,vpws", Ge, Gu, np.conj(C["lequ3"])) \ - 2*my_einsum("vp,wr,vwst", np.conj(Ge), Ge, C["lu"]) \ - 2*my_einsum("vs,wt,vwpr", np.conj(Gu), Gu, C["qe"]) \ + my_einsum("pv,vrst", Gammae, C["eu"]) \ + my_einsum("sv,prvt", Gammau, C["eu"]) \ + my_einsum("pvst,vr", C["eu"], Gammae) \ + my_einsum("prsv,vt", C["eu"], Gammau) Beta["ed"] = -2/3*gp**2*(my_einsum("st,pr", C["phid"], I3) \ + 2*(my_einsum("wwst,pr", C["qd1"], I3) \ - my_einsum("wwst,pr", C["ld"], I3) \ - 2*my_einsum("wwst,pr", C["dd"], I3) \ - my_einsum("wwst,pr", C["ed"], I3) \ + 2*my_einsum("wwst,pr", C["ud1"], I3)) \ - 4/3*my_einsum("swwt,pr", C["dd"], I3)) \ - 2/9*gp**2*(my_einsum("pr,st", C["phie"], I3) \ + 2*(my_einsum("wwpr,st", C["qe"], I3) \ - my_einsum("wwpr,st", C["le"], I3) \ - 4*my_einsum("prww,st", C["ee"], I3) \ - my_einsum("prww,st", C["ed"], I3) \ + 2*my_einsum("prww,st", C["eu"], I3))) \ + 4*gp**2*my_einsum("prst", C["ed"]) \ + 2*my_einsum("pr,st", Ge.conj().T @ Ge, C["phid"]) \ + 2*my_einsum("st,pr", Gd.conj().T @ Gd, C["phie"]) \ - 2*my_einsum("vp,wr,vwst", np.conj(Ge), Ge, C["ld"]) \ - 2*my_einsum("vs,wt,vwpr", np.conj(Gd), Gd, C["qe"]) \ + my_einsum("vp,wt,vrsw", np.conj(Ge), Gd, C["ledq"]) \ + my_einsum("vr,ws,vptw", Ge, np.conj(Gd), np.conj(C["ledq"])) \ + my_einsum("pv,vrst", Gammae, C["ed"]) \ + my_einsum("sv,prvt", Gammad, C["ed"]) \ + my_einsum("pvst,vr", C["ed"], Gammae) \ + my_einsum("prsv,vt", C["ed"], Gammad) #order Beta["ud1"] = 4/9*gp**2*(my_einsum("st,pr", C["phid"], I3) \ + 2*(my_einsum("wwst,pr", C["qd1"], I3) \ - my_einsum("wwst,pr", C["ld"], I3) \ - 2*my_einsum("wwst,pr", C["dd"], I3) \ + 2*my_einsum("wwst,pr", C["ud1"], I3) \ - my_einsum("wwst,pr", C["ed"], I3)) \ - 4/3*my_einsum("swwt,pr", C["dd"], I3)) \ - 2/9*gp**2*(my_einsum("pr,st", C["phiu"], I3) \ + 2*(my_einsum("wwpr,st", C["qu1"], I3) \ - my_einsum("wwpr,st", C["lu"], I3) \ + 4*my_einsum("wwpr,st", C["uu"], I3) \ - my_einsum("prww,st", C["ud1"], I3) \ - my_einsum("wwpr,st", C["eu"], I3)) \ + 8/3*my_einsum("pwwr,st", C["uu"], I3)) \ - 8/3*(gp**2*my_einsum("prst", C["ud1"]) \ - gs**2*my_einsum("prst", C["ud8"])) \ - 2*my_einsum("pr,st", Gu.conj().T @ Gu, C["phid"]) \ + 2*my_einsum("st,pr", Gd.conj().T @ Gd, C["phiu"]) \ + 2/3*my_einsum("sr,pt", Gd.conj().T @ Gu, C["phiud"]) \ + 2/3*my_einsum("pt,rs", Gu.conj().T @ Gd, np.conj(C["phiud"])) \ + 1/3*(my_einsum("vs,wp,vrwt", np.conj(Gd), np.conj(Gu), C["quqd1"]) \ + 4/3*my_einsum("vs,wp,vrwt", np.conj(Gd), np.conj(Gu), C["quqd8"]) \ + my_einsum("vt,wr,vpws", Gd, Gu, np.conj(C["quqd1"])) \ + 4/3*my_einsum("vt,wr,vpws", Gd, Gu, np.conj(C["quqd8"]))) \ - my_einsum("ws,vp,vrwt", np.conj(Gd), np.conj(Gu), C["quqd1"]) \ - my_einsum("wt,vr,vpws", Gd, Gu, np.conj(C["quqd1"])) \ - 2*my_einsum("vp,wr,vwst", np.conj(Gu), Gu, C["qd1"]) \ - 2*my_einsum("vs,wt,vwpr", np.conj(Gd), Gd, C["qu1"]) \ + my_einsum("pv,vrst", Gammau, C["ud1"]) \ + my_einsum("sv,prvt", Gammad, C["ud1"]) \ + my_einsum("pvst,vr", C["ud1"], Gammau) \ + my_einsum("prsv,vt", C["ud1"], Gammad) #order Beta["ud8"] = 8/3*gs**2*my_einsum("pwwr,st", C["uu"], I3) \ + 8/3*gs**2*my_einsum("swwt,pr", C["dd"], I3) \ + 4/3*gs**2*my_einsum("wwpr,st", C["qu8"], I3) \ + 4/3*gs**2*my_einsum("wwst,pr", C["qd8"], I3) \ + 2/3*gs**2*my_einsum("prww,st", C["ud8"], I3) \ + 2/3*gs**2*my_einsum("wwst,pr", C["ud8"], I3) \ - 4*(2/3*gp**2 \ + gs**2)*my_einsum("prst", C["ud8"]) \ + 12*gs**2*my_einsum("prst", C["ud1"]) \ + 4*my_einsum("sr,pt", Gd.conj().T @ Gu, C["phiud"]) \ + 4*my_einsum("pt,rs", Gu.conj().T @ Gd, np.conj(C["phiud"])) \ + 2*(my_einsum("vs,wp,vrwt", np.conj(Gd), np.conj(Gu), C["quqd1"]) \ - 1/6*my_einsum("vs,wp,vrwt", np.conj(Gd), np.conj(Gu), C["quqd8"]) \ + my_einsum("vt,wr,vpws", Gd, Gu, np.conj(C["quqd1"])) \ - 1/6*my_einsum("vt,wr,vpws", Gd, Gu, np.conj(C["quqd8"]))) \ - 2*my_einsum("vp,wr,vwst", np.conj(Gu), Gu, C["qd8"]) \ - 2*my_einsum("vs,wt,vwpr", np.conj(Gd), Gd, C["qu8"]) \ - (my_einsum("ws,vp,vrwt", np.conj(Gd), np.conj(Gu), C["quqd8"]) \ + my_einsum("wt,vr,vpws", Gd, Gu, np.conj(C["quqd8"]))) \ + my_einsum("pv,vrst", Gammau, C["ud8"]) \ + my_einsum("sv,prvt", Gammad, C["ud8"]) \ + my_einsum("pvst,vr", C["ud8"], Gammau) \ + my_einsum("prsv,vt", C["ud8"], Gammad) Beta["le"] = -1/3*gp**2*my_einsum("st,pr", C["phie"], I3) \ - 2/3*gp**2*my_einsum("pr,st", C["phil1"], I3) \ + 8/3*gp**2*my_einsum("prww,st", C["ll"], I3) \ + 4/3*gp**2*my_einsum("pwwr,st", C["ll"], I3) \ - 4/3*gp**2*my_einsum("prww,st", C["lq1"], I3) \ - 2/3*gp**2*my_einsum("wwst,pr", C["qe"], I3) \ + 4/3*gp**2*my_einsum("prww,st", C["le"], I3) \ + 2/3*gp**2*my_einsum("wwst,pr", C["le"], I3) \ - 8/3*gp**2*my_einsum("prww,st", C["lu"], I3) \ + 4/3*gp**2*my_einsum("prww,st", C["ld"], I3) \ - 4/3*gp**2*my_einsum("stww,pr", C["eu"], I3) \ + 2/3*gp**2*my_einsum("stww,pr", C["ed"], I3) \ + 8/3*gp**2*my_einsum("wwst,pr", C["ee"], I3) \ - 6*gp**2*my_einsum("prst", C["le"]) \ + my_einsum("rs,pt", np.conj(Ge), Xie) \ + my_einsum("pt,rs", Ge, np.conj(Xie)) \ - my_einsum("pr,st", Ge @ Ge.conj().T, C["phie"]) \ + 2*my_einsum("st,pr", Ge.conj().T @ Ge, C["phil1"]) \ - 4*my_einsum("pv,rw,vtsw", Ge, np.conj(Ge), C["ee"]) \ + my_einsum("pw,vs,vrwt", Ge, np.conj(Ge), C["le"]) \ - 2*my_einsum("wt,vs,pwvr", Ge, np.conj(Ge), C["ll"]) \ - 4*my_einsum("wt,vs,prvw", Ge, np.conj(Ge), C["ll"]) \ + my_einsum("vt,rw,pvsw", Ge, np.conj(Ge), C["le"]) \ + my_einsum("pv,vrst", Gammal, C["le"]) \ + my_einsum("sv,prvt", Gammae, C["le"]) \ + my_einsum("pvst,vr", C["le"], Gammal) \ + my_einsum("prsv,vt", C["le"], Gammae) #order Beta["lu"] = -1/3*gp**2*my_einsum("st,pr", C["phiu"], I3) \ + 4/9*gp**2*my_einsum("pr,st", C["phil1"], I3) \ - 16/9*gp**2*my_einsum("prww,st", C["ll"], I3) \ - 8/9*gp**2*my_einsum("pwwr,st", C["ll"], I3) \ + 8/9*gp**2*my_einsum("prww,st", C["lq1"], I3) \ - 2/3*gp**2*my_einsum("wwst,pr", C["qu1"], I3) \ + 16/9*gp**2*my_einsum("prww,st", C["lu"], I3) \ + 2/3*gp**2*my_einsum("wwst,pr", C["lu"], I3) \ - 8/9*gp**2*my_einsum("prww,st", C["ld"], I3) \ - 8/9*gp**2*my_einsum("prww,st", C["le"], I3) \ + 2/3*gp**2*my_einsum("stww,pr", C["ud1"], I3) \ + 2/3*gp**2*my_einsum("wwst,pr", C["eu"], I3) \ - 8/3*gp**2*my_einsum("stww,pr", C["uu"], I3) \ - 8/9*gp**2*my_einsum("swwt,pr", C["uu"], I3) \ + 4*gp**2*my_einsum("prst", C["lu"]) \ - my_einsum("pr,st", Ge @ Ge.conj().T, C["phiu"]) \ - 2*my_einsum("st,pr", Gu.conj().T @ Gu, C["phil1"]) \ - 1/2*(my_einsum("rv,ws,pvwt", np.conj(Ge), np.conj(Gu), C["lequ1"]) \ + 12*my_einsum("rv,ws,pvwt", np.conj(Ge), np.conj(Gu), C["lequ3"])) \ - 1/2*(my_einsum("pv,wt,rvws", Ge, Gu, np.conj(C["lequ1"])) \ + 12*my_einsum("pv,wt,rvws", Ge, Gu, np.conj(C["lequ3"]))) \ - 2*my_einsum("vs,wt,prvw", np.conj(Gu), Gu, C["lq1"]) \ - my_einsum("rw,pv,vwst", np.conj(Ge), Ge, C["eu"]) \ + my_einsum("pv,vrst", Gammal, C["lu"]) \ + my_einsum("sv,prvt", Gammau, C["lu"]) \ + my_einsum("pvst,vr", C["lu"], Gammal) \ + my_einsum("prsv,vt", C["lu"], Gammau) Beta["ld"] = -1/3*gp**2*my_einsum("st,pr", C["phid"], I3) \ - 2/9*gp**2*my_einsum("pr,st", C["phil1"], I3) \ + 8/9*gp**2*my_einsum("prww,st", C["ll"], I3) \ + 4/9*gp**2*my_einsum("pwwr,st", C["ll"], I3) \ - 4/9*gp**2*my_einsum("prww,st", C["lq1"], I3) \ - 2/3*gp**2*my_einsum("wwst,pr", C["qd1"], I3) \ + 4/9*gp**2*my_einsum("prww,st", C["ld"], I3) \ + 2/3*gp**2*my_einsum("wwst,pr", C["ld"], I3) \ - 8/9*gp**2*my_einsum("prww,st", C["lu"], I3) \ + 4/9*gp**2*my_einsum("prww,st", C["le"], I3) \ - 4/3*gp**2*my_einsum("wwst,pr", C["ud1"], I3) \ + 2/3*gp**2*my_einsum("wwst,pr", C["ed"], I3) \ + 4/3*gp**2*my_einsum("stww,pr", C["dd"], I3) \ + 4/9*gp**2*my_einsum("swwt,pr", C["dd"], I3) \ - 2*gp**2*my_einsum("prst", C["ld"]) \ - my_einsum("pr,st", Ge @ Ge.conj().T, C["phid"]) \ + 2*my_einsum("st,pr", Gd.conj().T @ Gd, C["phil1"]) \ - 1/2*my_einsum("rv,wt,pvsw", np.conj(Ge), Gd, C["ledq"]) \ - 1/2*my_einsum("pv,ws,rvtw", Ge, np.conj(Gd), np.conj(C["ledq"])) \ - 2*my_einsum("vs,wt,prvw", np.conj(Gd), Gd, C["lq1"]) \ - my_einsum("rw,pv,vwst", np.conj(Ge), Ge, C["ed"]) \ + my_einsum("pv,vrst", Gammal, C["ld"]) \ + my_einsum("sv,prvt", Gammad, C["ld"]) \ + my_einsum("pvst,vr", C["ld"], Gammal) \ + my_einsum("prsv,vt", C["ld"], Gammad) Beta["qe"] = 1/9*gp**2*my_einsum("st,pr", C["phie"], I3) \ - 2/3*gp**2*my_einsum("pr,st", C["phiq1"], I3) \ - 8/3*gp**2*my_einsum("prww,st", C["qq1"], I3) \ - 4/9*gp**2*(my_einsum("pwwr,st", C["qq1"], I3) \ + 3*my_einsum("pwwr,st", C["qq3"], I3)) \ + 4/3*gp**2*my_einsum("wwpr,st", C["lq1"], I3) \ - 2/9*gp**2*my_einsum("wwst,pr", C["le"], I3) \ + 4/3*gp**2*my_einsum("prww,st", C["qe"], I3) \ + 2/9*gp**2*my_einsum("wwst,pr", C["qe"], I3) \ - 8/3*gp**2*my_einsum("prww,st", C["qu1"], I3) \ + 4/3*gp**2*my_einsum("prww,st", C["qd1"], I3) \ + 4/9*gp**2*my_einsum("stww,pr", C["eu"], I3) \ - 2/9*gp**2*my_einsum("stww,pr", C["ed"], I3) \ - 8/9*gp**2*my_einsum("wwst,pr", C["ee"], I3) \ + 2*gp**2*my_einsum("prst", C["qe"]) \ + my_einsum("pr,st", Gu @ Gu.conj().T, C["phie"]) \ - my_einsum("pr,st", Gd @ Gd.conj().T, C["phie"]) \ + 2*my_einsum("st,pr", Ge.conj().T @ Ge, C["phiq1"]) \ - 1/2*my_einsum("pw,vs,vtwr", Gd, np.conj(Ge), C["ledq"]) \ - 1/2*my_einsum("vt,rw,vswp", Ge, np.conj(Gd), np.conj(C["ledq"])) \ - 2*my_einsum("vs,wt,vwpr", np.conj(Ge), Ge, C["lq1"]) \ - 1/2*(my_einsum("rw,vs,vtpw", np.conj(Gu), np.conj(Ge), C["lequ1"]) \ + 12*my_einsum("rw,vs,vtpw", np.conj(Gu), np.conj(Ge), C["lequ3"])) \ - 1/2*(my_einsum("pw,vt,vsrw", Gu, Ge, np.conj(C["lequ1"])) \ + 12*my_einsum("pw,vt,vsrw", Gu, Ge, np.conj(C["lequ3"]))) \ - my_einsum("rw,pv,stvw", np.conj(Gd), Gd, C["ed"]) \ - my_einsum("rw,pv,stvw", np.conj(Gu), Gu, C["eu"]) \ + my_einsum("pv,vrst", Gammaq, C["qe"]) \ + my_einsum("sv,prvt", Gammae, C["qe"]) \ + my_einsum("pvst,vr", C["qe"], Gammaq) \ + my_einsum("prsv,vt", C["qe"], Gammae) Beta["qu1"] = 1/9*gp**2*my_einsum("st,pr", C["phiu"], I3) \ + 4/9*gp**2*my_einsum("pr,st", C["phiq1"], I3) \ + 16/9*gp**2*my_einsum("prww,st", C["qq1"], I3) \ + 8/27*gp**2*(my_einsum("pwwr,st", C["qq1"], I3) \ + 3*my_einsum("pwwr,st", C["qq3"], I3)) \ - 8/9*gp**2*my_einsum("wwpr,st", C["lq1"], I3) \ - 8/9*gp**2*my_einsum("prww,st", C["qe"], I3) \ - 8/9*gp**2*my_einsum("prww,st", C["qd1"], I3) \ + 16/9*gp**2*my_einsum("prww,st", C["qu1"], I3) \ + 2/9*gp**2*my_einsum("wwst,pr", C["qu1"], I3) \ - 2/9*gp**2*my_einsum("wwst,pr", C["lu"], I3) \ - 2/9*gp**2*my_einsum("wwst,pr", C["eu"], I3) \ - 2/9*gp**2*my_einsum("stww,pr", C["ud1"], I3) \ + 8/9*gp**2*my_einsum("stww,pr", C["uu"], I3) \ + 8/27*gp**2*my_einsum("swwt,pr", C["uu"], I3) \ - 4/3*gp**2*my_einsum("prst", C["qu1"]) \ - 8/3*gs**2*my_einsum("prst", C["qu8"]) \ + 1/3*my_einsum("rs,pt", np.conj(Gu), Xiu) \ + 1/3*my_einsum("pt,rs", Gu, np.conj(Xiu)) \ + my_einsum("pr,st", Gu @ Gu.conj().T, C["phiu"]) \ - my_einsum("pr,st", Gd @ Gd.conj().T, C["phiu"]) \ - 2*my_einsum("st,pr", Gu.conj().T @ Gu, C["phiq1"]) \ + 1/3*(my_einsum("pw,vs,vrwt", Gu, np.conj(Gu), C["qu1"]) \ + 4/3*my_einsum("pw,vs,vrwt", Gu, np.conj(Gu), C["qu8"])) \ + 1/3*(my_einsum("vt,rw,pvsw", Gu, np.conj(Gu), C["qu1"]) \ + 4/3*my_einsum("vt,rw,pvsw", Gu, np.conj(Gu), C["qu8"])) \ + 1/3*(my_einsum("rw,vs,ptvw", np.conj(Gd), np.conj(Gu), C["quqd1"]) \ + 4/3*my_einsum("rw,vs,ptvw", np.conj(Gd), np.conj(Gu), C["quqd8"])) \ + 1/3*(my_einsum("pw,vt,rsvw", Gd, Gu, np.conj(C["quqd1"])) \ + 4/3*my_einsum("pw,vt,rsvw", Gd, Gu, np.conj(C["quqd8"]))) \ + 1/2*my_einsum("rw,vs,vtpw", np.conj(Gd), np.conj(Gu), C["quqd1"]) \ + 1/2*my_einsum("pw,vt,vsrw", Gd, Gu, np.conj(C["quqd1"])) \ - 2/3*(my_einsum("vt,ws,pvwr", Gu, np.conj(Gu), C["qq1"]) \ + 3*my_einsum("vt,ws,pvwr", Gu, np.conj(Gu), C["qq3"])) \ - 4*my_einsum("wt,vs,prvw", Gu, np.conj(Gu), C["qq1"]) \ - 2/3*my_einsum("pv,rw,vtsw", Gu, np.conj(Gu), C["uu"]) \ - 2*my_einsum("pv,rw,vwst", Gu, np.conj(Gu), C["uu"]) \ - my_einsum("pv,rw,stvw", Gd, np.conj(Gd), C["ud1"]) \ + my_einsum("pv,vrst", Gammaq, C["qu1"]) \ + my_einsum("sv,prvt", Gammau, C["qu1"]) \ + my_einsum("pvst,vr", C["qu1"], Gammaq) \ + my_einsum("prsv,vt", C["qu1"], Gammau) Beta["qd1"] = 1/9*gp**2*my_einsum("st,pr", C["phid"], I3) \ - 2/9*gp**2*my_einsum("pr,st", C["phiq1"], I3) \ - 8/9*gp**2*my_einsum("prww,st", C["qq1"], I3) \ - 4/27*gp**2*(my_einsum("pwwr,st", C["qq1"], I3) \ + 3*my_einsum("pwwr,st", C["qq3"], I3)) \ + 4/9*gp**2*my_einsum("wwpr,st", C["lq1"], I3) \ + 4/9*gp**2*my_einsum("prww,st", C["qe"], I3) \ - 8/9*gp**2*my_einsum("prww,st", C["qu1"], I3) \ + 4/9*gp**2*my_einsum("prww,st", C["qd1"], I3) \ + 2/9*gp**2*my_einsum("wwst,pr", C["qd1"], I3) \ - 2/9*gp**2*my_einsum("wwst,pr", C["ld"], I3) \ - 2/9*gp**2*my_einsum("wwst,pr", C["ed"], I3) \ + 4/9*gp**2*my_einsum("wwst,pr", C["ud1"], I3) \ - 4/9*gp**2*my_einsum("stww,pr", C["dd"], I3) \ - 4/27*gp**2*my_einsum("swwt,pr", C["dd"], I3) \ + 2/3*gp**2*my_einsum("prst", C["qd1"]) \ - 8/3*gs**2*my_einsum("prst", C["qd8"]) \ + 1/3*my_einsum("rs,pt", np.conj(Gd), Xid) \ + 1/3*my_einsum("pt,rs", Gd, np.conj(Xid)) \ + my_einsum("pr,st", Gu @ Gu.conj().T, C["phid"]) \ - my_einsum("pr,st", Gd @ Gd.conj().T, C["phid"]) \ + 2*my_einsum("st,pr", Gd.conj().T @ Gd, C["phiq1"]) \ + 1/3*(my_einsum("pw,vs,vrwt", Gd, np.conj(Gd), C["qd1"]) \ + 4/3*my_einsum("pw,vs,vrwt", Gd, np.conj(Gd), C["qd8"])) \ + 1/3*(my_einsum("vt,rw,pvsw", Gd, np.conj(Gd), C["qd1"]) \ + 4/3*my_einsum("vt,rw,pvsw", Gd, np.conj(Gd), C["qd8"])) \ + 1/3*(my_einsum("rw,vs,vwpt", np.conj(Gu), np.conj(Gd), C["quqd1"]) \ + 4/3*my_einsum("rw,vs,vwpt", np.conj(Gu), np.conj(Gd), C["quqd8"])) \ + 1/3*(my_einsum("pw,vt,vwrs", Gu, Gd, np.conj(C["quqd1"])) \ + 4/3*my_einsum("pw,vt,vwrs", Gu, Gd, np.conj(C["quqd8"]))) \ + 1/2*my_einsum("ws,rv,pvwt", np.conj(Gd), np.conj(Gu), C["quqd1"]) \ + 1/2*my_einsum("pv,wt,rvws", Gu, Gd, np.conj(C["quqd1"])) \ - 2/3*(my_einsum("vt,ws,pvwr", Gd, np.conj(Gd), C["qq1"]) \ + 3*my_einsum("vt,ws,pvwr", Gd, np.conj(Gd), C["qq3"])) \ - 4*my_einsum("wt,vs,prvw", Gd, np.conj(Gd), C["qq1"]) \ - 2/3*my_einsum("pv,rw,vtsw", Gd, np.conj(Gd), C["dd"]) \ - 2*my_einsum("pv,rw,vwst", Gd, np.conj(Gd), C["dd"]) \ - my_einsum("pv,rw,vwst", Gu, np.conj(Gu), C["ud1"]) \ + my_einsum("pv,vrst", Gammaq, C["qd1"]) \ + my_einsum("sv,prvt", Gammad, C["qd1"]) \ + my_einsum("pvst,vr", C["qd1"], Gammaq) \ + my_einsum("prsv,vt", C["qd1"], Gammad) Beta["qu8"] = 8/3*gs**2*(my_einsum("pwwr,st", C["qq1"], I3) \ + 3*my_einsum("pwwr,st", C["qq3"], I3)) \ + 2/3*gs**2*my_einsum("prww,st", C["qu8"], I3) \ + 2/3*gs**2*my_einsum("prww,st", C["qd8"], I3) \ + 4/3*gs**2*my_einsum("wwst,pr", C["qu8"], I3) \ + 2/3*gs**2*my_einsum("stww,pr", C["ud8"], I3) \ + 8/3*gs**2*my_einsum("swwt,pr", C["uu"], I3) \ - (4/3*gp**2 \ + 14*gs**2)*my_einsum("prst", C["qu8"]) \ - 12*gs**2*my_einsum("prst", C["qu1"]) \ + 2*my_einsum("rs,pt", np.conj(Gu), Xiu) \ + 2*my_einsum("pt,rs", Gu, np.conj(Xiu)) \ + 2*(my_einsum("pw,vs,vrwt", Gu, np.conj(Gu), C["qu1"]) \ - 1/6*my_einsum("pw,vs,vrwt", Gu, np.conj(Gu), C["qu8"])) \ + 2*(my_einsum("vt,rw,pvsw", Gu, np.conj(Gu), C["qu1"]) \ - 1/6*my_einsum("vt,rw,pvsw", Gu, np.conj(Gu), C["qu8"])) \ + 2*(my_einsum("rw,vs,ptvw", np.conj(Gd), np.conj(Gu), C["quqd1"]) \ - 1/6*my_einsum("rw,vs,ptvw", np.conj(Gd), np.conj(Gu), C["quqd8"])) \ + 2*(my_einsum("pw,vt,rsvw", Gd, Gu, np.conj(C["quqd1"])) \ - 1/6*my_einsum("pw,vt,rsvw", Gd, Gu, np.conj(C["quqd8"]))) \ + 1/2*my_einsum("vs,rw,vtpw", np.conj(Gu), np.conj(Gd), C["quqd8"]) \ + 1/2*my_einsum("vt,pw,vsrw", Gu, Gd, np.conj(C["quqd8"])) \ - 4*(my_einsum("vt,ws,pvwr", Gu, np.conj(Gu), C["qq1"]) \ + 3*my_einsum("vt,ws,pvwr", Gu, np.conj(Gu), C["qq3"])) \ - 4*my_einsum("pv,rw,vtsw", Gu, np.conj(Gu), C["uu"]) \ - my_einsum("pv,rw,stvw", Gd, np.conj(Gd), C["ud8"]) \ + my_einsum("pv,vrst", Gammaq, C["qu8"]) \ + my_einsum("sv,prvt", Gammau, C["qu8"]) \ + my_einsum("pvst,vr", C["qu8"], Gammaq) \ + my_einsum("prsv,vt", C["qu8"], Gammau) Beta["qd8"] = 8/3*gs**2*(my_einsum("pwwr,st", C["qq1"], I3) \ + 3*my_einsum("pwwr,st", C["qq3"], I3)) \ + 2/3*gs**2*my_einsum("prww,st", C["qu8"], I3) \ + 2/3*gs**2*my_einsum("prww,st", C["qd8"], I3) \ + 4/3*gs**2*my_einsum("wwst,pr", C["qd8"], I3) \ + 2/3*gs**2*my_einsum("wwst,pr", C["ud8"], I3) \ + 8/3*gs**2*my_einsum("swwt,pr", C["dd"], I3) \ - (-2/3*gp**2 \ + 14*gs**2)*my_einsum("prst", C["qd8"]) \ - 12*gs**2*my_einsum("prst", C["qd1"]) \ + 2*my_einsum("rs,pt", np.conj(Gd), Xid) \ + 2*my_einsum("pt,rs", Gd, np.conj(Xid)) \ + 2*(my_einsum("pw,vs,vrwt", Gd, np.conj(Gd), C["qd1"]) \ - 1/6*my_einsum("pw,vs,vrwt", Gd, np.conj(Gd), C["qd8"])) \ + 2*(my_einsum("vt,rw,pvsw", Gd, np.conj(Gd), C["qd1"]) \ - 1/6*my_einsum("vt,rw,pvsw", Gd, np.conj(Gd), C["qd8"])) \ + 2*(my_einsum("rw,vs,vwpt", np.conj(Gu), np.conj(Gd), C["quqd1"]) \ - 1/6*my_einsum("rw,vs,vwpt", np.conj(Gu), np.conj(Gd), C["quqd8"])) \ + 2*(my_einsum("pw,vt,vwrs", Gu, Gd, np.conj(C["quqd1"])) \ - 1/6*my_einsum("pw,vt,vwrs", Gu, Gd, np.conj(C["quqd8"]))) \ + 1/2*my_einsum("vs,rw,pwvt", np.conj(Gd), np.conj(Gu), C["quqd8"]) \ + 1/2*my_einsum("vt,pw,rwvs", Gd, Gu, np.conj(C["quqd8"])) \ - 4*(my_einsum("vt,ws,pvwr", Gd, np.conj(Gd), C["qq1"]) \ + 3*my_einsum("vt,ws,pvwr", Gd, np.conj(Gd), C["qq3"])) \ - 4*my_einsum("pv,rw,vtsw", Gd, np.conj(Gd), C["dd"]) \ - my_einsum("pv,rw,vwst", Gu, np.conj(Gu), C["ud8"]) \ + my_einsum("pv,vrst", Gammaq, C["qd8"]) \ + my_einsum("sv,prvt", Gammad, C["qd8"]) \ + my_einsum("pvst,vr", C["qd8"], Gammaq) \ + my_einsum("prsv,vt", C["qd8"], Gammad) Beta["ledq"] = -(8/3*gp**2 \ + 8*gs**2)*my_einsum("prst", C["ledq"]) \ - 2*my_einsum("ts,pr", np.conj(Gd), Xie) \ - 2*my_einsum("pr,ts", Ge, np.conj(Xid)) \ + 2*my_einsum("pv,tw,vrsw", Ge, np.conj(Gd), C["ed"]) \ - 2*my_einsum("vr,tw,pvsw", Ge, np.conj(Gd), C["ld"]) \ + 2*my_einsum("vr,ws,pvwt", Ge, np.conj(Gd), C["lq1"]) \ + 6*my_einsum("vr,ws,pvwt", Ge, np.conj(Gd), C["lq3"]) \ - 2*my_einsum("pw,vs,vtwr", Ge, np.conj(Gd), C["qe"]) \ + 2*my_einsum("vs,tw,prvw", np.conj(Gd), np.conj(Gu), C["lequ1"]) \ + my_einsum("pv,vrst", Gammal, C["ledq"]) \ + my_einsum("sv,prvt", Gammad, C["ledq"]) \ + my_einsum("pvst,vr", C["ledq"], Gammae) \ + my_einsum("prsv,vt", C["ledq"], Gammaq) Beta["quqd1"] = 10/3*gp*my_einsum("st,pr", C["dB"], Gu) \ - 6*g*my_einsum("st,pr", C["dW"], Gu) \ - 20/9*gp*my_einsum("pt,sr", C["dB"], Gu) \ + 4*g*my_einsum("pt,sr", C["dW"], Gu) \ - 64/9*gs*my_einsum("pt,sr", C["dG"], Gu) \ - 2/3*gp*my_einsum("pr,st", C["uB"], Gd) \ - 6*g*my_einsum("pr,st", C["uW"], Gd) \ + 4/9*gp*my_einsum("sr,pt", C["uB"], Gd) \ + 4*g*my_einsum("sr,pt", C["uW"], Gd) \ - 64/9*gs*my_einsum("sr,pt", C["uG"], Gd) \ - 1/2*(11/9*gp**2 + 3*g**2 + 32*gs**2)*my_einsum("prst", C["quqd1"]) \ - 1/3*( - 5/9*gp**2 - 3*g**2 + 64/3*gs**2)*my_einsum("srpt", C["quqd1"]) \ - 4/9*( - 5/9*gp**2 - 3*g**2 + 28/3*gs**2)*my_einsum("srpt", C["quqd8"]) \ + 16/9*gs**2*my_einsum("prst", C["quqd8"]) \ - 2*my_einsum("pr,st", Gu, Xid) \ - 2*my_einsum("st,pr", Gd, Xiu) \ + 4/3*(my_einsum("vr,pw,svwt", Gu, Gd, C["qd1"]) \ + 4/3*my_einsum("vr,pw,svwt", Gu, Gd, C["qd8"]) \ + my_einsum("vt,sw,pvwr", Gd, Gu, C["qu1"]) \ + 4/3*my_einsum("vt,sw,pvwr", Gd, Gu, C["qu8"]) \ + my_einsum("pw,sv,vrwt", Gd, Gu, C["ud1"]) \ + 4/3*my_einsum("pw,sv,vrwt", Gd, Gu, C["ud8"])) \ + 8/3*(my_einsum("wt,vr,svpw", Gd, Gu, C["qq1"]) \ - 3*my_einsum("wt,vr,svpw", Gd, Gu, C["qq3"]) \ - 3*my_einsum("wt,vr,swpv", Gd, Gu, C["qq1"]) \ + 9*my_einsum("wt,vr,swpv", Gd, Gu, C["qq3"])) \ - 4*my_einsum("sw,pv,vrwt", Gd, Gu, C["ud1"]) \ + my_einsum("pv,vrst", Gammaq, C["quqd1"]) \ + my_einsum("sv,prvt", Gammaq, C["quqd1"]) \ + my_einsum("pvst,vr", C["quqd1"], Gammau) \ + my_einsum("prsv,vt", C["quqd1"], Gammad) Beta["quqd8"] = 8*gs*my_einsum("st,pr", C["dG"], Gu) \ - 40/3*gp*my_einsum("pt,sr", C["dB"], Gu) \ + 24*g*my_einsum("pt,sr", C["dW"], Gu) \ + 16/3*gs*my_einsum("pt,sr", C["dG"], Gu) \ + 8*gs*my_einsum("pr,st", C["uG"], Gd) \ + 8/3*gp*my_einsum("sr,pt", C["uB"], Gd) \ + 24*g*my_einsum("sr,pt", C["uW"], Gd) \ + 16/3*gs*my_einsum("sr,pt", C["uG"], Gd) \ + 8*gs**2*my_einsum("prst", C["quqd1"]) \ + (10/9*gp**2 + 6*g**2 + 16/3*gs**2)*my_einsum("srpt", C["quqd1"]) \ + (-11/18*gp**2 - 3/2*g**2 + 16/3*gs**2)*my_einsum("prst", C["quqd8"]) \ - 1/3*(5/9*gp**2 + 3*g**2 \ + 44/3*gs**2)*my_einsum("srpt", C["quqd8"]) \ + 8*(my_einsum("vr,pw,svwt", Gu, Gd, C["qd1"]) \ - 1/6*my_einsum("vr,pw,svwt", Gu, Gd, C["qd8"]) \ + my_einsum("vt,sw,pvwr", Gd, Gu, C["qu1"]) \ - 1/6*my_einsum("vt,sw,pvwr", Gd, Gu, C["qu8"]) \ + my_einsum("pw,sv,vrwt", Gd, Gu, C["ud1"]) \ - 1/6*my_einsum("pw,sv,vrwt", Gd, Gu, C["ud8"])) \ + 16*(my_einsum("wt,vr,svpw", Gd, Gu, C["qq1"]) \ - 3*my_einsum("wt,vr,svpw", Gd, Gu, C["qq3"])) \ - 4*my_einsum("sw,pv,vrwt", Gd, Gu, C["ud8"]) \ + my_einsum("pv,vrst", Gammaq, C["quqd8"]) \ + my_einsum("sv,prvt", Gammaq, C["quqd8"]) \ + my_einsum("pvst,vr", C["quqd8"], Gammau) \ + my_einsum("prsv,vt", C["quqd8"], Gammad) Beta["lequ1"] = -(11/3*gp**2 + 8*gs**2)*my_einsum("prst", C["lequ1"]) \ + (30*gp**2 + 18*g**2)*my_einsum("prst", C["lequ3"]) \ + 2*my_einsum("st,pr", Gu, Xie) \ + 2*my_einsum("pr,st", Ge, Xiu) \ + 2*my_einsum("sv,wt,prvw", Gd, Gu, C["ledq"]) \ + 2*my_einsum("pv,sw,vrwt", Ge, Gu, C["eu"]) \ + 2*my_einsum("vr,wt,pvsw", Ge, Gu, C["lq1"]) \ - 6*my_einsum("vr,wt,pvsw", Ge, Gu, C["lq3"]) \ - 2*my_einsum("vr,sw,pvwt", Ge, Gu, C["lu"]) \ - 2*my_einsum("pw,vt,svwr", Ge, Gu, C["qe"]) \ + my_einsum("pv,vrst", Gammal, C["lequ1"]) \ + my_einsum("sv,prvt", Gammaq, C["lequ1"]) \ + my_einsum("pvst,vr", C["lequ1"], Gammae) \ + my_einsum("prsv,vt", C["lequ1"], Gammau) Beta["lequ3"] = 5/6*gp*my_einsum("pr,st", C["eB"], Gu) \ - 3/2*g*my_einsum("st,pr", C["uW"], Ge) \ - 3/2*gp*my_einsum("st,pr", C["uB"], Ge) \ - 3/2*g*my_einsum("pr,st", C["eW"], Gu) \ + (2/9*gp**2 - 3*g**2 + 8/3*gs**2)*my_einsum("prst", C["lequ3"]) \ + 1/8*(5*gp**2 + 3*g**2)*my_einsum("prst", C["lequ1"]) \ - 1/2*my_einsum("sw,pv,vrwt", Gu, Ge, C["eu"]) \ - 1/2*my_einsum("vr,wt,pvsw", Ge, Gu, C["lq1"]) \ + 3/2*my_einsum("vr,wt,pvsw", Ge, Gu, C["lq3"]) \ - 1/2*my_einsum("vr,sw,pvwt", Ge, Gu, C["lu"]) \ - 1/2*my_einsum("pw,vt,svwr", Ge, Gu, C["qe"]) \ + my_einsum("pv,vrst", Gammal, C["lequ3"]) \ + my_einsum("sv,prvt", Gammaq, C["lequ3"]) \ + my_einsum("pvst,vr", C["lequ3"], Gammae) \ + my_einsum("prsv,vt", C["lequ3"], Gammau) Beta["duql"] = -(9/2*g**2 \ + 11/6*gp**2 \ + 4*gs**2)*my_einsum("prst", C["duql"]) \ - my_einsum("sv,wp,vrwt", np.conj(Gd), Gd, C["duql"]) \ - my_einsum("sv,wr,pvwt", np.conj(Gu), Gu, C["duql"]) \ + 2*my_einsum("tv,sw,prwv", np.conj(Ge), np.conj(Gu), C["duue"]) \ + my_einsum("tv,sw,pwrv", np.conj(Ge), np.conj(Gu), C["duue"]) \ + 4*my_einsum("vp,wr,vwst", Gd, Gu, C["qqql"]) \ + 4*my_einsum("vp,wr,wvst", Gd, Gu, C["qqql"]) \ - my_einsum("vp,wr,vswt", Gd, Gu, C["qqql"]) \ - my_einsum("vp,wr,wsvt", Gd, Gu, C["qqql"]) \ + 2*my_einsum("wp,tv,wsrv", Gd, np.conj(Ge), C["qque"]) \ + my_einsum("vp,vrst", Gd.conj().T @ Gd, C["duql"]) \ + my_einsum("vr,pvst", Gu.conj().T @ Gu, C["duql"]) \ + 1/2*(my_einsum("vs,prvt", Gu @ Gu.conj().T, C["duql"]) \ + my_einsum("vs,prvt", Gd @ Gd.conj().T, C["duql"])) \ + 1/2*my_einsum("vt,prsv", Ge @ Ge.conj().T, C["duql"]) Beta["qque"] = -(9/2*g**2 \ + 23/6*gp**2 + 4*gs**2)*my_einsum("prst", C["qque"]) \ - my_einsum("rv,ws,pwvt", np.conj(Gu), Gu, C["qque"]) \ + 1/2*my_einsum("wt,rv,vspw", Ge, np.conj(Gd), C["duql"]) \ - 1/2*(2*my_einsum("pv,rw,vwst", np.conj(Gd), np.conj(Gu), C["duue"]) \ + my_einsum("pv,rw,vswt", np.conj(Gd), np.conj(Gu), C["duue"])) \ + 1/2*( \ - 2*my_einsum("ws,vt,prwv", Gu, Ge, C["qqql"]) \ + my_einsum("ws,vt,pwrv", Gu, Ge, C["qqql"]) \ - 2*my_einsum("ws,vt,wprv", Gu, Ge, C["qqql"])) \ + 1/2*(my_einsum("vp,vrst", Gu @ Gu.conj().T, C["qque"]) \ + my_einsum("vp,vrst", Gd @ Gd.conj().T, C["qque"])) \ - my_einsum("pv,ws,rwvt", np.conj(Gu), Gu, C["qque"]) \ + 1/2*my_einsum("wt,pv,vsrw", Ge, np.conj(Gd), C["duql"]) \ - 1/2*(2*my_einsum("rv,pw,vwst", np.conj(Gd), np.conj(Gu), C["duue"]) \ + my_einsum("rv,pw,vswt", np.conj(Gd), np.conj(Gu), C["duue"])) \ + 1/2*( \ - 2*my_einsum("ws,vt,rpwv", Gu, Ge, C["qqql"]) \ + my_einsum("ws,vt,rwpv", Gu, Ge, C["qqql"]) \ - 2*my_einsum("ws,vt,wrpv", Gu, Ge, C["qqql"])) \ + 1/2*(my_einsum("vr,vpst", Gu @ Gu.conj().T, C["qque"]) \ + my_einsum("vr,vpst", Gd @ Gd.conj().T, C["qque"])) \ + my_einsum("vs,prvt", Gu.conj().T @ Gu, C["qque"]) \ + my_einsum("vt,prsv", Ge.conj().T @ Ge, C["qque"]) Beta["qqql"] = -(3*g**2 \ + 1/3*gp**2 + 4*gs**2)*my_einsum("prst", C["qqql"]) \ - 4*g**2*(my_einsum("rpst", C["qqql"]) \ + my_einsum("srpt", C["qqql"]) \ + my_einsum("psrt", C["qqql"])) \ - 4*my_einsum("tv,sw,prwv", np.conj(Ge), np.conj(Gu), C["qque"]) \ + 2*(my_einsum("pv,rw,vwst", np.conj(Gd), np.conj(Gu), C["duql"]) \ + my_einsum("rv,pw,vwst", np.conj(Gd), np.conj(Gu), C["duql"])) \ + 1/2*(my_einsum("vp,vrst", Gu @ Gu.conj().T, C["qqql"]) \ + my_einsum("vp,vrst", Gd @ Gd.conj().T, C["qqql"])) \ + 1/2*(my_einsum("vr,pvst", Gu @ Gu.conj().T, C["qqql"]) \ + my_einsum("vr,pvst", Gd @ Gd.conj().T, C["qqql"])) \ + 1/2*(my_einsum("vs,prvt", Gu @ Gu.conj().T, C["qqql"]) \ + my_einsum("vs,prvt", Gd @ Gd.conj().T, C["qqql"])) \ + 1/2*my_einsum("vt,prsv", Ge @ Ge.conj().T, C["qqql"]) Beta["duue"] = -(2*gp**2 + 4*gs**2)*my_einsum("prst", C["duue"]) \ - 20/3*gp**2*my_einsum("psrt", C["duue"]) \ + 4*my_einsum("ws,vt,prwv", Gu, Ge, C["duql"]) \ - 8*my_einsum("vp,wr,vwst", Gd, Gu, C["qque"]) \ + my_einsum("vp,vrst", Gd.conj().T @ Gd, C["duue"]) \ + my_einsum("vr,pvst", Gu.conj().T @ Gu, C["duue"]) \ + my_einsum("vs,prvt", Gu.conj().T @ Gu, C["duue"]) \ + my_einsum("vt,prsv", Ge.conj().T @ Ge, C["duue"]) Beta["llphiphi"] = (2*Lambda \ - 3*g**2 \ + 2*GammaH)*C["llphiphi"]-3/2*(C["llphiphi"] @ Ge @ Ge.conj().T \ + Ge.conj() @ Ge.T @ C["llphiphi"]) return Beta def beta_array(C, HIGHSCALE=1, *args, **kwargs): """Return the beta functions of all SM parameters and SMEFT Wilson coefficients as a 1D numpy array.""" beta_odict = beta(C, HIGHSCALE, *args, **kwargs) return np.hstack([np.asarray(b).ravel() for b in beta_odict.values()])
Module variables
var I3
Functions
def beta(
C, HIGHSCALE=1, newphys=True)
Return the beta functions of all SM parameters and SMEFT Wilson coefficients.
def beta(C, HIGHSCALE=1, newphys=True): """Return the beta functions of all SM parameters and SMEFT Wilson coefficients.""" g = C["g"] gp = C["gp"] gs = C["gs"] m2 = C["m2"] Lambda = C["Lambda"] Gu = C["Gu"] Gd = C["Gd"] Ge = C["Ge"] Eta1 = (3*np.trace(C["uphi"] @ Gu.conj().T) \ + 3*np.trace(C["dphi"] @ Gd.conj().T) \ + np.trace(C["ephi"] @ Ge.conj().T) \ + 3*np.conj(np.trace(C["uphi"] @ Gu.conj().T)) \ + 3*np.conj(np.trace(C["dphi"] @ Gd.conj().T)) \ + np.conj(np.trace(C["ephi"] @ Ge.conj().T)))/2 Eta2 = -6*np.trace(C["phiq3"] @ Gu @ Gu.conj().T) \ - 6*np.trace(C["phiq3"] @ Gd @ Gd.conj().T) \ - 2*np.trace(C["phil3"] @ Ge @ Ge.conj().T) \ + 3*(np.trace(C["phiud"] @ Gd.conj().T @ Gu) \ + np.conj(np.trace(C["phiud"] @ Gd.conj().T @ Gu))) Eta3 = 3*np.trace(C["phiq1"] @ Gd @ Gd.conj().T) \ - 3*np.trace(C["phiq1"] @ Gu @ Gu.conj().T) \ + 9*np.trace(C["phiq3"] @ Gd @ Gd.conj().T) \ + 9*np.trace(C["phiq3"] @ Gu @ Gu.conj().T) \ + 3*np.trace(C["phiu"] @ Gu.conj().T @ Gu) \ - 3*np.trace(C["phid"] @ Gd.conj().T @ Gd) \ - 3*(np.trace(C["phiud"] @ Gd.conj().T @ Gu) \ + np.conj(np.trace(C["phiud"] @ Gd.conj().T @ Gu))) \ + np.trace(C["phil1"] @ Ge @ Ge.conj().T) \ + 3*np.trace(C["phil3"] @ Ge @ Ge.conj().T) \ - np.trace(C["phie"] @ Ge.conj().T @ Ge) Eta4 = 12*np.trace(C["phiq1"] @ Gd @ Gd.conj().T) \ - 12*np.trace(C["phiq1"] @ Gu @ Gu.conj().T) \ + 12*np.trace(C["phiu"] @ Gu.conj().T @ Gu) \ - 12*np.trace(C["phid"] @ Gd.conj().T @ Gd) \ + 6*(np.trace(C["phiud"] @ Gd.conj().T @ Gu) \ + np.conj(np.trace(C["phiud"] @ Gd.conj().T @ Gu))) \ + 4*np.trace(C["phil1"] @ Ge @ Ge.conj().T) \ - 4*np.trace(C["phie"] @ Ge.conj().T @ Ge) Eta5 = 1j*3/2*(np.trace(Gd @ C["dphi"].conj().T) \ - np.conj(np.trace(Gd @ C["dphi"].conj().T))) \ - 1j*3/2*(np.trace(Gu @ C["uphi"].conj().T) \ - np.conj(np.trace(Gu @ C["uphi"].conj().T))) \ + 1j*1/2*(np.trace(Ge @ C["ephi"].conj().T) \ - np.conj(np.trace(Ge @ C["ephi"].conj().T))) GammaH = np.trace(3*Gu @ Gu.conj().T + 3*Gd @ Gd.conj().T + Ge @ Ge.conj().T) Gammaq = 1/2*(Gu @ Gu.conj().T + Gd @ Gd.conj().T) Gammau = Gu.conj().T @ Gu Gammad = Gd.conj().T @ Gd Gammal = 1/2*Ge @ Ge.conj().T Gammae = Ge.conj().T @ Ge Beta = OrderedDict() Beta["g"] = -19/6*g**3 - 8*g*m2/HIGHSCALE**2*C["phiW"] Beta["gp"] = 41/6*gp**3 - 8*gp*m2/HIGHSCALE**2*C["phiB"] Beta["gs"] = -7*gs**3 - 8*gs*m2/HIGHSCALE**2*C["phiG"] Beta["Lambda"] = 12*Lambda**2 \ + 3/4*gp**4 + 3/2*g**2*gp**2 + 9/4*g**4 - 3*(gp**2 + 3*g**2)*Lambda \ + 4*Lambda*GammaH \ - 4*(3*np.trace(Gd @ Gd.conj().T @ Gd @ Gd.conj().T) \ + 3*np.trace(Gu @ Gu.conj().T @ Gu @ Gu.conj().T) \ + np.trace(Ge @ Ge.conj().T @ Ge @ Ge.conj().T)) \ + 4*m2/HIGHSCALE**2*(12*C["phi"] \ + (-16*Lambda + 10/3*g**2)*C["phiBox"] \ + (6*Lambda + 3/2*(gp**2 - g**2))*C["phiD"] \ + 2*(Eta1 + Eta2) \ + 9*g**2*C["phiW"] \ + 3*gp**2*C["phiB"] \ + 3*g*gp*C["phiWB"] \ + 4/3*g**2*(np.trace(C["phil3"]) \ + 3*np.trace(C["phiq3"]))) Beta["m2"] = m2*(6*Lambda - 9/2*g**2 - 3/2*gp**2 \ + 2*GammaH + 4*m2/HIGHSCALE**2*(C["phiD"] \ - 2*C["phiBox"])) Beta["Gu"] = 3/2*(Gu @ Gu.conj().T @ Gu - Gd @ Gd.conj().T @ Gu) \ + (GammaH - 9/4*g**2 - 17/12*gp**2 - 8*gs**2)*Gu \ + 2*m2/HIGHSCALE**2*(3*C["uphi"] \ + 1/2*(C["phiD"] - 2*C["phiBox"])*Gu \ - C["phiq1"].conj().T @ Gu \ + 3*C["phiq3"].conj().T @ Gu \ + Gu @ C["phiu"].conj().T \ - Gd @ C["phiud"].conj().T \ - 2*(my_einsum("rpts,pt", C["qu1"], Gu) \ + 4/3*my_einsum("rpts,pt", C["qu8"], Gu)) \ - my_einsum("ptrs,pt", C["lequ1"], np.conj(Ge)) \ + 3*my_einsum("rspt,pt", C["quqd1"], np.conj(Gd)) \ + 1/2*(my_einsum("psrt,pt", C["quqd1"], np.conj(Gd)) \ + 4/3*my_einsum("psrt,pt", C["quqd8"], np.conj(Gd)))) Beta["Gd"] = 3/2*(Gd @ Gd.conj().T @ Gd - Gu @ Gu.conj().T @ Gd) \ + (GammaH - 9/4*g**2 - 5/12*gp**2 - 8*gs**2)*Gd \ + 2*m2/HIGHSCALE**2*(3*C["dphi"] + 1/2*(C["phiD"] \ - 2*C["phiBox"])*Gd \ + C["phiq1"].conj().T @ Gd \ + 3*C["phiq3"].conj().T @ Gd \ - Gd @ C["phid"].conj().T \ - Gu @ C["phiud"] \ - 2*(my_einsum("rpts,pt", C["qd1"], Gd) \ + 4/3*my_einsum("rpts,pt", C["qd8"], Gd)) \ + my_einsum("ptsr,pt", np.conj(C["ledq"]), Ge) \ + 3*my_einsum("ptrs,pt", C["quqd1"], np.conj(Gu)) \ + 1/2*(my_einsum("rpts,tp", C["quqd1"], np.conj(Gu)) \ + 4/3*my_einsum("rpts,tp", C["quqd8"], np.conj(Gu)))) Beta["Ge"] = 3/2*Ge @ Ge.conj().T @ Ge + (GammaH \ - 3/4*(3*g**2 + 5*gp**2))*Ge + 2*m2/HIGHSCALE**2*(3*C["ephi"] \ + 1/2*(C["phiD"] - 2*C["phiBox"])*Ge \ + C["phil1"].conj().T @ Ge \ + 3*C["phil3"].conj().T @ Ge \ - Ge @ C["phie"].conj().T \ - 2*my_einsum("rpts,pt", C["le"], Ge) \ + 3*my_einsum("rspt,tp", C["ledq"], Gd) \ - 3*my_einsum("rspt,pt", C["lequ1"], np.conj(Gu))) if not newphys: # if there is no new physics, generate a dictionary with zero # Wilson coefficients (i.e. zero beta functions) BetaSM = smeftutil.C_array2dict(np.zeros(5000)) BetaSM.update(Beta) return BetaSM XiB = 2/3*(C["phiBox"] + C["phiD"]) \ + 8/3*( - np.trace(C["phil1"]) + np.trace(C["phiq1"]) \ - np.trace(C["phie"]) \ + 2*np.trace(C["phiu"]) - np.trace(C["phid"])) Xie = 2*my_einsum("prst,rs", C["le"], Ge) \ - 3*my_einsum("ptsr,rs", C["ledq"], Gd) \ + 3*my_einsum("ptsr,sr", C["lequ1"], np.conj(Gu)) Xid = 2*(my_einsum("prst,rs", C["qd1"], Gd) \ + 4/3*my_einsum("prst,rs", C["qd8"], Gd)) \ - (3*my_einsum("srpt,sr", C["quqd1"], np.conj(Gu)) \ + 1/2*(my_einsum("prst,sr", C["quqd1"], np.conj(Gu)) \ + 4/3*my_einsum("prst,sr", C["quqd8"], np.conj(Gu)))) \ - my_einsum("srtp,sr", np.conj(C["ledq"]), Ge) Xiu = 2*(my_einsum("prst,rs", C["qu1"], Gu) \ + 4/3*my_einsum("prst,rs", C["qu8"], Gu)) \ - (3*my_einsum("ptsr,sr", C["quqd1"], np.conj(Gd)) \ + 1/2*(my_einsum("stpr,sr", C["quqd1"], np.conj(Gd)) \ + 4/3*my_einsum("stpr,sr", C["quqd8"], np.conj(Gd)))) \ + my_einsum("srpt,sr", C["lequ1"], np.conj(Ge)) Beta["G"] = 15*gs**2*C["G"] Beta["Gtilde"] = 15*gs**2*C["Gtilde"] Beta["W"] = 29/2*g**2*C["W"] Beta["Wtilde"] = 29/2*g**2*C["Wtilde"] #c.c. Beta["phi"] = -9/2*(3*g**2 \ + gp**2)*C["phi"] \ + Lambda*(20/3*g**2*C["phiBox"] \ + 3*(gp**2 \ - g**2)*C["phiD"]) \ - 3/4*(g**2 \ + gp**2)**2*C["phiD"] \ + 6*Lambda*(3*g**2*C["phiW"] \ + gp**2*C["phiB"] \ + g*gp*C["phiWB"]) \ - 3*(g**2*gp**2 \ + 3*g**4)*C["phiW"] \ - 3*(gp**4 \ + g**2*gp**2)*C["phiB"] \ - 3*(g*gp**3 \ + g**3*gp)*C["phiWB"] \ + 8/3*Lambda*g**2*(np.trace(C["phil3"]) \ + 3*np.trace(C["phiq3"])) \ + 54*Lambda*C["phi"] \ - 40*Lambda**2*C["phiBox"] \ + 12*Lambda**2*C["phiD"] \ + 4*Lambda*(Eta1 \ + Eta2) \ - 4*(3*np.trace(C["uphi"] @ Gu.conj().T @ Gu @ Gu.conj().T) \ + 3*np.trace(C["dphi"] @ Gd.conj().T @ Gd @ Gd.conj().T) \ + np.trace(C["ephi"] @ Ge.conj().T @ Ge @ Ge.conj().T) \ + 3*np.conj(np.trace(C["uphi"] @ Gu.conj().T @ Gu @ Gu.conj().T)) \ + 3*np.conj(np.trace(C["dphi"] @ Gd.conj().T @ Gd @ Gd.conj().T)) \ + np.conj(np.trace(C["ephi"] @ Ge.conj().T @ Ge @ Ge.conj().T))) \ + 6*GammaH*C["phi"] Beta["phiBox"] = -(4*g**2 \ + 4/3*gp**2)*C["phiBox"] \ + 5/3*gp**2*C["phiD"] \ + 2*g**2*(np.trace(C["phil3"]) \ + 3*np.trace(C["phiq3"])) \ + 2/3*gp**2*(2*np.trace(C["phiu"]) \ - np.trace(C["phid"]) \ - np.trace(C["phie"]) \ + np.trace(C["phiq1"]) \ - np.trace(C["phil1"])) \ + 12*Lambda*C["phiBox"] \ - 2*Eta3 \ + 4*GammaH*C["phiBox"] Beta["phiD"] = 20/3*gp**2*C["phiBox"] \ + (9/2*g**2 \ - 5/6*gp**2)*C["phiD"] \ + 8/3*gp**2*(2*np.trace(C["phiu"]) \ - np.trace(C["phid"]) \ - np.trace(C["phie"]) \ + np.trace(C["phiq1"]) \ - np.trace(C["phil1"])) \ + 6*Lambda*C["phiD"] \ - 2*Eta4 \ + 4*GammaH*C["phiD"] #c.c. Beta["phiG"] = (-3/2*gp**2 \ - 9/2*g**2 \ - 14*gs**2)*C["phiG"] \ + 6*Lambda*C["phiG"] \ - 2*gs*(np.trace(C["uG"] @ Gu.conj().T) \ + np.trace(C["dG"] @ Gd.conj().T) \ + np.conj(np.trace(C["uG"] @ Gu.conj().T)) \ + np.conj(np.trace(C["dG"] @ Gd.conj().T))) \ + 2*GammaH*C["phiG"] #c.c. Beta["phiB"] = (85/6*gp**2 \ - 9/2*g**2)*C["phiB"] \ + 3*g*gp*C["phiWB"] \ + 6*Lambda*C["phiB"] \ + gp*( \ - 5*np.trace(C["uB"] @ Gu.conj().T) \ + np.trace(C["dB"] @ Gd.conj().T) \ + 3*np.trace(C["eB"] @ Ge.conj().T) \ - 5*np.conj(np.trace(C["uB"] @ Gu.conj().T)) \ + np.conj(np.trace(C["dB"] @ Gd.conj().T)) \ + 3*np.conj(np.trace(C["eB"] @ Ge.conj().T))) \ + 2*GammaH*C["phiB"] #c.c. Beta["phiW"] = (-3/2*gp**2 \ - 53/6*g**2)*C["phiW"] \ + g*gp*C["phiWB"] \ - 15*g**3*C["W"] \ + 6*Lambda*C["phiW"] \ - g*(3*np.trace(C["uW"] @ Gu.conj().T) \ + 3*np.trace(C["dW"] @ Gd.conj().T) \ + np.trace(C["eW"] @ Ge.conj().T) \ + 3*np.conj(np.trace(C["uW"] @ Gu.conj().T)) \ + 3*np.conj(np.trace(C["dW"] @ Gd.conj().T)) \ + np.conj(np.trace(C["eW"] @ Ge.conj().T))) \ + 2*GammaH*C["phiW"] #c.c. Beta["phiWB"] = (19/3*gp**2 \ + 4/3*g**2)*C["phiWB"] \ + 2*g*gp*(C["phiB"] \ + C["phiW"]) \ + 3*g**2*gp*C["W"] \ + 2*Lambda*C["phiWB"] \ + g*(3*np.trace(C["uB"] @ Gu.conj().T) \ - 3*np.trace(C["dB"] @ Gd.conj().T) \ - np.trace(C["eB"] @ Ge.conj().T) \ + 3*np.conj(np.trace(C["uB"] @ Gu.conj().T)) \ - 3*np.conj(np.trace(C["dB"] @ Gd.conj().T)) \ - np.conj(np.trace(C["eB"] @ Ge.conj().T))) \ + gp*(5*np.trace(C["uW"] @ Gu.conj().T) \ + np.trace(C["dW"] @ Gd.conj().T) \ + 3*np.trace(C["eW"] @ Ge.conj().T) \ + 5*np.conj(np.trace(C["uW"] @ Gu.conj().T)) \ + np.conj(np.trace(C["dW"] @ Gd.conj().T)) \ + 3*np.conj(np.trace(C["eW"] @ Ge.conj().T))) \ + 2*GammaH*C["phiWB"] #problem with i as I*iCPV Beta["phiGtilde"] = (-3/2*gp**2 \ - 9/2*g**2 \ - 14*gs**2)*C["phiGtilde"] \ + 6*Lambda*C["phiGtilde"] \ + 2j*gs*(np.trace(C["uG"] @ Gu.conj().T) \ + np.trace(C["dG"] @ Gd.conj().T) \ - np.conj(np.trace(C["uG"] @ Gu.conj().T)) \ - np.conj(np.trace(C["dG"] @ Gd.conj().T))) \ + 2*GammaH*C["phiGtilde"] #i Beta["phiBtilde"] = (85/6*gp**2 \ - 9/2*g**2)*C["phiBtilde"] \ + 3*g*gp*C["phiWtildeB"] \ + 6*Lambda*C["phiBtilde"] \ - 1j*gp*( \ - 5*np.trace(C["uB"] @ Gu.conj().T) \ + np.trace(C["dB"] @ Gd.conj().T) \ + 3*np.trace(C["eB"] @ Ge.conj().T) \ + 5*np.conj(np.trace(C["uB"] @ Gu.conj().T)) \ - np.conj(np.trace(C["dB"] @ Gd.conj().T)) \ - 3*np.conj(np.trace(C["eB"] @ Ge.conj().T))) \ + 2*GammaH*C["phiBtilde"] #i Beta["phiWtilde"] = (-3/2*gp**2 \ - 53/6*g**2)*C["phiWtilde"] \ + g*gp*C["phiWtildeB"] \ - 15*g**3*C["Wtilde"] \ + 6*Lambda*C["phiWtilde"] \ + 1j*g*(3*np.trace(C["uW"] @ Gu.conj().T) \ + 3*np.trace(C["dW"] @ Gd.conj().T) \ + np.trace(C["eW"] @ Ge.conj().T) \ - 3*np.conj(np.trace(C["uW"] @ Gu.conj().T)) \ - 3*np.conj(np.trace(C["dW"] @ Gd.conj().T)) \ - np.conj(np.trace(C["eW"] @ Ge.conj().T))) \ + 2*GammaH*C["phiWtilde"] #i Beta["phiWtildeB"] = (19/3*gp**2 \ + 4/3*g**2)*C["phiWtildeB"] \ + 2*g*gp*(C["phiBtilde"] \ + C["phiWtilde"]) \ + 3*g**2*gp*C["Wtilde"] \ + 2*Lambda*C["phiWtildeB"] \ - 1j*g*(3*np.trace(C["uB"] @ Gu.conj().T) \ - 3*np.trace(C["dB"] @ Gd.conj().T) \ - np.trace(C["eB"] @ Ge.conj().T) \ - 3*np.conj(np.trace(C["uB"] @ Gu.conj().T)) \ + 3*np.conj(np.trace(C["dB"] @ Gd.conj().T)) \ + np.conj(np.trace(C["eB"] @ Ge.conj().T))) \ - 1j*gp*(5*np.trace(C["uW"] @ Gu.conj().T) \ + np.trace(C["dW"] @ Gd.conj().T) \ + 3*np.trace(C["eW"] @ Ge.conj().T) \ - 5*np.conj(np.trace(C["uW"] @ Gu.conj().T)) \ - np.conj(np.trace(C["dW"] @ Gd.conj().T)) \ - 3*np.conj(np.trace(C["eW"] @ Ge.conj().T))) \ + 2*GammaH*C["phiWtildeB"] """(3,3)""" #i #the coefficients of Eta5 is not equal Beta["uphi"] = (10/3*g**2*C["phiBox"] \ + 3/2*(gp**2 \ - g**2)*C["phiD"] \ + 32*gs**2*(C["phiG"] \ + 1j*C["phiGtilde"]) \ + 9*g**2*(C["phiW"] \ + 1j*C["phiWtilde"]) \ + 17/3*gp**2*(C["phiB"] \ + 1j*C["phiBtilde"]) \ - g*gp*(C["phiWB"] \ + 1j*C["phiWtildeB"]) \ + 4/3*g**2*(np.trace(C["phil3"]) \ + 3*np.trace(C["phiq3"])))*Gu \ - (35/12*gp**2 \ + 27/4*g**2 \ + 8*gs**2)*C["uphi"] \ - gp*(5*gp**2 \ - 3*g**2)*C["uB"] \ + g*(5*gp**2 \ - 9*g**2)*C["uW"] \ - (3*g**2 \ - gp**2)*Gu @ C["phiu"] \ + 3*g**2*Gd @ C["phiud"].conj().T \ + 4*gp**2*C["phiq1"] @ Gu \ - 4*gp**2*C["phiq3"] @ Gu \ - 5*gp*(C["uB"] @ Gu.conj().T @ Gu \ + Gu @ Gu.conj().T @ C["uB"]) \ - 3*g*(C["uW"] @ Gu.conj().T @ Gu \ - Gu @ Gu.conj().T @ C["uW"]) \ - 16*gs*(C["uG"] @ Gu.conj().T @ Gu \ + Gu @ Gu.conj().T @ C["uG"]) \ - 12*g*Gd @ Gd.conj().T @ C["uW"] \ - 6*g*C["dW"] @ Gd.conj().T @ Gu \ + Lambda*(12*C["uphi"] \ - 2*C["phiq1"] @ Gu \ + 6*C["phiq3"] @ Gu \ + 2*Gu @ C["phiu"] \ - 2*Gd @ C["phiud"].conj().T \ - 2*C["phiBox"]*Gu \ + C["phiD"]*Gu \ - 4*my_einsum("rpts,pt", C["qu1"], Gu) \ - 16/3*my_einsum("rpts,pt", C["qu8"], Gu) \ - 2*my_einsum("ptrs,pt", C["lequ1"], np.conj(Ge)) \ + 6*my_einsum("rspt,pt", C["quqd1"], np.conj(Gd)) \ + my_einsum("psrt,pt", C["quqd1"], np.conj(Gd)) \ + 4/3*my_einsum("psrt,pt", C["quqd8"], np.conj(Gd))) \ + 2*(Eta1 \ + Eta2 \ - 1j*Eta5)*Gu \ + (C["phiD"] \ - 6*C["phiBox"])*Gu @ Gu.conj().T @ Gu \ - 2*C["phiq1"] @ Gu @ Gu.conj().T @ Gu \ + 6*C["phiq3"] @ Gd @ Gd.conj().T @ Gu \ + 2*Gu @ Gu.conj().T @ Gu @ C["phiu"] \ - 2*Gd @ Gd.conj().T @ Gd @ C["phiud"].conj().T \ + 8*(my_einsum("rpts,pt", C["qu1"], Gu @ Gu.conj().T @ Gu) \ + 4/3*my_einsum("rpts,pt", C["qu8"], Gu @ Gu.conj().T @ Gu)) \ - 2*(my_einsum("tsrp,pt", C["quqd1"], Gd.conj().T @ Gd @ Gd.conj().T) \ + 4/3*my_einsum("tsrp,pt", C["quqd8"], Gd.conj().T @ Gd @ Gd.conj().T)) \ - 12*my_einsum("rstp,pt", C["quqd1"], Gd.conj().T @ Gd @ Gd.conj().T) \ + 4*my_einsum("tprs,pt", C["lequ1"], Ge.conj().T @ Ge @ Ge.conj().T) \ + 4*C["uphi"] @ Gu.conj().T @ Gu \ + 5*Gu @ Gu.conj().T @ C["uphi"] \ - 2*Gd @ C["dphi"].conj().T @ Gu \ - C["dphi"] @ Gd.conj().T @ Gu \ - 2*Gd @ Gd.conj().T @ C["uphi"] \ + 3*GammaH*C["uphi"] \ + Gammaq @ C["uphi"] \ + C["uphi"] @ Gammau #i #Eta5 Beta["dphi"] = (10/3*g**2*C["phiBox"] \ + 3/2*(gp**2 \ - g**2)*C["phiD"] \ + 32*gs**2*(C["phiG"] \ + 1j*C["phiGtilde"]) \ + 9*g**2*(C["phiW"] \ + 1j*C["phiWtilde"]) \ + 5/3*gp**2*(C["phiB"] \ + 1j*C["phiBtilde"]) \ + g*gp*(C["phiWB"] \ + 1j*C["phiWtildeB"]) \ + 4/3*g**2*(np.trace(C["phil3"]) \ + 3*np.trace(C["phiq3"])))*Gd \ - (23/12*gp**2 \ + 27/4*g**2 \ + 8*gs**2)*C["dphi"] \ - gp*(3*g**2 \ - gp**2)*C["dB"] \ - g*(9*g**2 \ - gp**2)*C["dW"] \ + (3*g**2 \ + gp**2)*Gd @ C["phid"] \ + 3*g**2*Gu @ C["phiud"] \ - 2*gp**2*C["phiq1"] @ Gd \ - 2*gp**2*C["phiq3"] @ Gd \ + gp*(C["dB"] @ Gd.conj().T @ Gd \ + Gd @ Gd.conj().T @ C["dB"]) \ - 3*g*(C["dW"] @ Gd.conj().T @ Gd \ - Gd @ Gd.conj().T @ C["dW"]) \ - 16*gs*(C["dG"] @ Gd.conj().T @ Gd \ + Gd @ Gd.conj().T @ C["dG"]) \ - 12*g*Gu @ Gu.conj().T @ C["dW"] \ - 6*g*C["uW"] @ Gu.conj().T @ Gd \ + Lambda*(12*C["dphi"] \ + 2*C["phiq1"] @ Gd \ + 6*C["phiq3"] @ Gd \ - 2*Gd @ C["phid"] \ - 2*Gu @ C["phiud"] \ - 2*C["phiBox"]*Gd \ + C["phiD"]*Gd \ - 4*my_einsum("rpts,pt", C["qd1"], Gd) \ - 16/3*my_einsum("rpts,pt", C["qd8"], Gd) \ + 2*my_einsum("ptsr,pt", np.conj(C["ledq"]), Ge) \ + 6*my_einsum("ptrs,pt", C["quqd1"], np.conj(Gu)) \ + my_einsum("rtps,pt", C["quqd1"], np.conj(Gu)) \ + 4/3*my_einsum("rtps,pt", C["quqd8"], np.conj(Gu))) \ + 2*(Eta1 \ + Eta2 \ + 1j*Eta5)*Gd \ + (C["phiD"] \ - 6*C["phiBox"])*Gd @ Gd.conj().T @ Gd \ + 2*C["phiq1"] @ Gd @ Gd.conj().T @ Gd \ + 6*C["phiq3"] @ Gu @ Gu.conj().T @ Gd \ - 2*Gd @ Gd.conj().T @ Gd @ C["phid"] \ - 2*Gu @ Gu.conj().T @ Gu @ C["phiud"] \ + 8*(my_einsum("rpts,pt", C["qd1"], Gd @ Gd.conj().T @ Gd) \ + 4/3*my_einsum("rpts,pt", C["qd8"], Gd @ Gd.conj().T @ Gd)) \ - 2*(my_einsum("rpts,pt", C["quqd1"], Gu.conj().T @ Gu @ Gu.conj().T) \ + 4/3*my_einsum("rpts,pt", C["quqd8"], Gu.conj().T @ Gu @ Gu.conj().T)) \ - 12*my_einsum("tprs,pt", C["quqd1"], Gu @ Gu.conj().T @ Gu) \ - 4*my_einsum("ptsr,pt", np.conj(C["ledq"]), Ge @ Ge.conj().T @ Ge) \ + 4*C["dphi"] @ Gd.conj().T @ Gd \ + 5*Gd @ Gd.conj().T @ C["dphi"] \ - 2*Gu @ C["uphi"].conj().T @ Gd \ - C["uphi"] @ Gu.conj().T @ Gd \ - 2*Gu @ Gu.conj().T @ C["dphi"] \ + 3*GammaH*C["dphi"] \ + Gammaq @ C["dphi"] \ + C["dphi"] @ Gammad #i Beta["ephi"] = (10/3*g**2*C["phiBox"] \ + 3/2*(gp**2 \ - g**2)*C["phiD"] \ + 9*g**2*(C["phiW"] \ + 1j*C["phiWtilde"]) \ + 15*gp**2*(C["phiB"] \ + 1j*C["phiBtilde"]) \ - 3*g*gp*(C["phiWB"] \ + 1j*C["phiWtildeB"]) \ + 4/3*g**2*(np.trace(C["phil3"]) \ + 3*np.trace(C["phiq3"])))*Ge \ - 3/4*(7*gp**2 \ + 9*g**2)*C["ephi"] \ - 3*gp*(g**2 \ - 3*gp**2)*C["eB"] \ - 9*g*(g**2 \ - gp**2)*C["eW"] \ + 3*(g**2 \ - gp**2)*Ge @ C["phie"] \ - 6*gp**2*C["phil1"] @ Ge \ - 6*gp**2*C["phil3"] @ Ge \ + 9*gp*(C["eB"] @ Ge.conj().T @ Ge \ + Ge @ Ge.conj().T @ C["eB"]) \ - 3*g*(C["eW"] @ Ge.conj().T @ Ge \ - Ge @ Ge.conj().T @ C["eW"]) \ + Lambda*(12*C["ephi"] \ + 2*C["phil1"] @ Ge \ + 6*C["phil3"] @ Ge \ - 2*Ge @ C["phie"] \ - 2*C["phiBox"]*Ge \ + C["phiD"]*Ge \ - 4*my_einsum("rpts,pt", C["le"], Ge) \ + 6*my_einsum("rspt,tp", C["ledq"], Gd) \ - 6*my_einsum("rspt,pt", C["lequ1"], np.conj(Gu))) \ + 2*(Eta1 \ + Eta2 \ + 1j*Eta5)*Ge \ + (C["phiD"] \ - 6*C["phiBox"])*Ge @ Ge.conj().T @ Ge \ + 2*C["phil1"] @ Ge @ Ge.conj().T @ Ge \ - 2*Ge @ Ge.conj().T @ Ge @ C["phie"] \ + 8*my_einsum("rpts,pt", C["le"], Ge @ Ge.conj().T @ Ge) \ - 12*my_einsum("rspt,tp", C["ledq"], Gd @ Gd.conj().T @ Gd) \ + 12*my_einsum("rstp,pt", C["lequ1"], Gu.conj().T @ Gu @ Gu.conj().T) \ + 4*C["ephi"] @ Ge.conj().T @ Ge \ + 5*Ge @ Ge.conj().T @ C["ephi"] \ + 3*GammaH*C["ephi"] \ + Gammal @ C["ephi"] \ + C["ephi"] @ Gammae #i Beta["eW"] = 1/12*(3*gp**2 \ - 11*g**2)*C["eW"] \ - 1/2*g*gp*C["eB"] \ - (g*(C["phiW"] \ + 1j*C["phiWtilde"]) \ - 3/2*gp*(C["phiWB"] \ + 1j*C["phiWtildeB"]))*Ge \ - 6*g*my_einsum("rspt,pt", C["lequ3"], np.conj(Gu)) \ + C["eW"] @ Ge.conj().T @ Ge \ + GammaH*C["eW"] \ + Gammal @ C["eW"] \ + C["eW"] @ Gammae #i Beta["eB"] = 1/4*(151/3*gp**2 \ - 9*g**2)*C["eB"] \ - 3/2*g*gp*C["eW"] \ - (3/2*g*(C["phiWB"] \ + 1j*C["phiWtildeB"]) \ - 3*gp*(C["phiB"] \ + 1j*C["phiBtilde"]))*Ge \ + 10*gp*my_einsum("rspt,pt", C["lequ3"], np.conj(Gu)) \ + C["eB"] @ Ge.conj().T @ Ge \ + 2*Ge @ Ge.conj().T @ C["eB"] \ + GammaH*C["eB"] \ + Gammal @ C["eB"] \ + C["eB"] @ Gammae #i Beta["uG"] = -1/36*(81*g**2 \ + 19*gp**2 \ + 204*gs**2)*C["uG"] \ + 6*g*gs*C["uW"] \ + 10/3*gp*gs*C["uB"] \ - gs*(4*(C["phiG"] \ + 1j*C["phiGtilde"]) \ - 9*gs*(C["G"] \ + 1j*C["Gtilde"]))*Gu \ - gs*(my_einsum("psrt,pt", C["quqd1"], np.conj(Gd)) \ - 1/6*my_einsum("psrt,pt", C["quqd8"], np.conj(Gd))) \ + 2*Gu @ Gu.conj().T @ C["uG"] \ - 2*Gd @ Gd.conj().T @ C["uG"] \ - C["dG"] @ Gd.conj().T @ Gu \ + C["uG"] @ Gu.conj().T @ Gu \ + GammaH*C["uG"] \ + Gammaq @ C["uG"] \ + C["uG"] @ Gammau #i Beta["uW"] = -1/36*(33*g**2 \ + 19*gp**2 \ - 96*gs**2)*C["uW"] \ + 8/3*g*gs*C["uG"] \ - 1/6*g*gp*C["uB"] \ - (g*(C["phiW"] \ + 1j*C["phiWtilde"]) \ - 5/6*gp*(C["phiWB"] \ + 1j*C["phiWtildeB"]))*Gu \ + g/4*(my_einsum("psrt,pt", C["quqd1"], np.conj(Gd)) \ + 4/3*my_einsum("psrt,pt", C["quqd8"], np.conj(Gd))) \ - 2*g*my_einsum("ptrs,pt", C["lequ3"], np.conj(Ge)) \ + 2*Gd @ Gd.conj().T @ C["uW"] \ - C["dW"] @ Gd.conj().T @ Gu \ + C["uW"] @ Gu.conj().T @ Gu \ + GammaH*C["uW"] \ + Gammaq @ C["uW"] \ + C["uW"] @ Gammau #i Beta["uB"] = -1/36*(81*g**2 \ - 313*gp**2 \ - 96*gs**2)*C["uB"] \ + 40/9*gp*gs*C["uG"] \ - 1/2*g*gp*C["uW"] \ - (-3/2*g*(C["phiWB"] \ + 1j*C["phiWtildeB"]) \ + 5/3*gp*(C["phiB"] \ + 1j*C["phiBtilde"]))*Gu \ + gp/12*(my_einsum("psrt,pt", C["quqd1"], np.conj(Gd)) \ + 4/3*my_einsum("psrt,pt", C["quqd8"], np.conj(Gd))) \ - 6*gp*my_einsum("ptrs,pt", C["lequ3"], np.conj(Ge)) \ + 2*Gu @ Gu.conj().T @ C["uB"] \ - 2*Gd @ Gd.conj().T @ C["uB"] \ - C["dB"] @ Gd.conj().T @ Gu \ + C["uB"] @ Gu.conj().T @ Gu \ + GammaH*C["uB"] \ + Gammaq @ C["uB"] \ + C["uB"] @ Gammau #i Beta["dG"] = -1/36*(81*g**2 \ + 31*gp**2 \ + 204*gs**2)*C["dG"] \ + 6*g*gs*C["dW"] \ - 2/3*gp*gs*C["dB"] \ - gs*(4*(C["phiG"] \ + 1j*C["phiGtilde"]) \ - 9*gs*(C["G"] \ + 1j*C["Gtilde"]))*Gd \ - gs*(my_einsum("rtps,pt", C["quqd1"], np.conj(Gu)) \ - 1/6*my_einsum("rtps,pt", C["quqd8"], np.conj(Gu))) \ - 2*Gu @ Gu.conj().T @ C["dG"] \ + 2*Gd @ Gd.conj().T @ C["dG"] \ - C["uG"] @ Gu.conj().T @ Gd \ + C["dG"] @ Gd.conj().T @ Gd \ + GammaH*C["dG"] \ + Gammaq @ C["dG"] \ + C["dG"] @ Gammad #i Beta["dW"] = -1/36*(33*g**2 \ + 31*gp**2 \ - 96*gs**2)*C["dW"] \ + 8/3*g*gs*C["dG"] \ + 5/6*g*gp*C["dB"] \ - (g*(C["phiW"] \ + 1j*C["phiWtilde"]) \ - gp/6*(C["phiWB"] \ + 1j*C["phiWtildeB"]))*Gd \ + g/4*(my_einsum("rtps,pt", C["quqd1"], np.conj(Gu)) \ + 4/3*my_einsum("rtps,pt", C["quqd8"], np.conj(Gu))) \ + 2*Gu @ Gu.conj().T @ C["dW"] \ - C["uW"] @ Gu.conj().T @ Gd \ + C["dW"] @ Gd.conj().T @ Gd \ + GammaH*C["dW"] \ + Gammaq @ C["dW"] \ + C["dW"] @ Gammad #i Beta["dB"] = -1/36*(81*g**2 \ - 253*gp**2 \ - 96*gs**2)*C["dB"] \ - 8/9*gp*gs*C["dG"] \ + 5/2*g*gp*C["dW"] \ - (3/2*g*(C["phiWB"] \ + 1j*C["phiWtildeB"]) \ - gp/3*(C["phiB"] \ + 1j*C["phiBtilde"]))*Gd \ - 5/12*gp*(my_einsum("rtps,pt", C["quqd1"], np.conj(Gu)) \ + 4/3*my_einsum("rtps,pt", C["quqd8"], np.conj(Gu))) \ - 2*Gu @ Gu.conj().T @ C["dB"] \ + 2*Gd @ Gd.conj().T @ C["dB"] \ - C["uB"] @ Gu.conj().T @ Gd \ + C["dB"] @ Gd.conj().T @ Gd \ + GammaH*C["dB"] \ + Gammaq @ C["dB"] \ + C["dB"] @ Gammad #I3 #coefficient not equal with manual!!!!!! Beta["phil1"] = -1/4*XiB*gp**2*I3 \ + 1/3*gp**2*C["phil1"] \ - 2/3*gp**2*(my_einsum("rstt", C["ld"]) \ + my_einsum("rstt", C["le"]) \ + 2*my_einsum("rstt", C["ll"]) \ + my_einsum("rtts", C["ll"]) \ - my_einsum("rstt", C["lq1"]) \ - 2*my_einsum("rstt", C["lu"])) \ - 1/2*(C["phiBox"] \ + C["phiD"])*Ge @ Ge.conj().T \ - Ge @ C["phie"] @ Ge.conj().T \ + 3/2*(Ge @ Ge.conj().T @ C["phil1"] \ + C["phil1"] @ Ge @ Ge.conj().T \ + 3*Ge @ Ge.conj().T @ C["phil3"] \ + 3*C["phil3"] @ Ge @ Ge.conj().T) \ + 2*my_einsum("rspt,tp", C["le"], Ge.conj().T @ Ge) \ - 2*(2*my_einsum("rspt,tp", C["ll"], Ge @ Ge.conj().T) \ + my_einsum("rtps,tp", C["ll"], Ge @ Ge.conj().T)) \ - 6*my_einsum("rspt,tp", C["lq1"], Gd @ Gd.conj().T) \ + 6*my_einsum("rspt,tp", C["lq1"], Gu @ Gu.conj().T) \ - 6*my_einsum("rspt,tp", C["lu"], Gu.conj().T @ Gu) \ + 6*my_einsum("rspt,tp", C["ld"], Gd.conj().T @ Gd) \ + 2*GammaH*C["phil1"] \ + Gammal @ C["phil1"] \ + C["phil1"] @ Gammal #I3 #coefficient Beta["phil3"] = 2/3*g**2*(1/4*C["phiBox"] \ + np.trace(C["phil3"]) \ + 3*np.trace(C["phiq3"]))*I3 \ - 17/3*g**2*C["phil3"] \ + 2/3*g**2*my_einsum("rtts", C["ll"]) \ + 2*g**2*my_einsum("rstt", C["lq3"]) \ - 1/2*C["phiBox"]*Ge @ Ge.conj().T \ + 1/2*(3*Ge @ Ge.conj().T @ C["phil1"] \ + 3*C["phil1"] @ Ge @ Ge.conj().T \ + Ge @ Ge.conj().T @ C["phil3"] \ + C["phil3"] @ Ge @ Ge.conj().T) \ - 2*(my_einsum("rtps,tp", C["ll"], Ge @ Ge.conj().T)) \ - 6*my_einsum("rspt,tp", C["lq3"], Gd @ Gd.conj().T) \ - 6*my_einsum("rspt,tp", C["lq3"], Gu @ Gu.conj().T) \ + 2*GammaH*C["phil3"] \ + Gammal @ C["phil3"] \ + C["phil3"] @ Gammal #I3 #coefficient even terms not equal... Beta["phie"] = -1/2*XiB*gp**2*I3 \ + 1/3*gp**2*C["phie"] \ - 2/3*gp**2*(my_einsum("rstt", C["ed"]) \ + 4*my_einsum("rstt", C["ee"]) \ - 2*my_einsum("rstt", C["eu"]) \ + my_einsum("ttrs", C["le"]) \ - my_einsum("ttrs", C["qe"])) \ + (C["phiBox"] \ + C["phiD"])*Ge.conj().T @ Ge \ - 2*Ge.conj().T @ C["phil1"] @ Ge \ + 3*(Ge.conj().T @ Ge @ C["phie"] \ + C["phie"] @ Ge.conj().T @ Ge) \ - 2*my_einsum("ptrs,tp", C["le"], Ge @ Ge.conj().T) \ + 8*my_einsum("rspt,tp", C["ee"], Ge.conj().T @ Ge) \ - 6*my_einsum("rspt,tp", C["eu"], Gu.conj().T @ Gu) \ + 6*my_einsum("rspt,tp", C["ed"], Gd.conj().T @ Gd) \ - 6*my_einsum("ptrs,tp", C["qe"], Gd @ Gd.conj().T) \ + 6*my_einsum("ptrs,tp", C["qe"], Gu @ Gu.conj().T) \ + 2*GammaH*C["phie"] \ + Gammae @ C["phie"] \ + C["phie"] @ Gammae #I3 #coefficient??? Beta["phiq1"] = 1/12*XiB*gp**2*I3 \ + 1/3*gp**2*C["phiq1"] \ - 2/3*gp**2*(my_einsum("ttrs", C["lq1"]) \ + my_einsum("rstt", C["qd1"]) \ - 2*my_einsum("rstt", C["qu1"]) \ + my_einsum("rstt", C["qe"]) \ - 2*my_einsum("rstt", C["qq1"]) \ - 1/3*my_einsum("rtts", C["qq1"]) \ - my_einsum("rtts", C["qq3"])) \ + 1/2*(C["phiBox"] \ + C["phiD"])*(Gu @ Gu.conj().T \ - Gd @ Gd.conj().T) \ - Gu @ C["phiu"] @ Gu.conj().T \ - Gd @ C["phid"] @ Gd.conj().T \ + 2*my_einsum("rspt,tp", C["qe"], Ge.conj().T @ Ge) \ - 2*my_einsum("ptrs,tp", C["lq1"], Ge @ Ge.conj().T) \ + 3/2*(Gd @ Gd.conj().T @ C["phiq1"] \ + Gu @ Gu.conj().T @ C["phiq1"] \ + C["phiq1"] @ Gd @ Gd.conj().T \ + C["phiq1"] @ Gu @ Gu.conj().T \ + 3*Gd @ Gd.conj().T @ C["phiq3"] \ - 3*Gu @ Gu.conj().T @ C["phiq3"] \ + 3*C["phiq3"] @ Gd @ Gd.conj().T \ - 3*C["phiq3"] @ Gu @ Gu.conj().T) \ - 2*(6*my_einsum("ptrs,tp", C["qq1"], Gd @ Gd.conj().T) \ + my_einsum("psrt,tp", C["qq1"], Gd @ Gd.conj().T) \ + 3*my_einsum("psrt,tp", C["qq3"], Gd @ Gd.conj().T) \ - 6*my_einsum("ptrs,tp", C["qq1"], Gu @ Gu.conj().T) \ - my_einsum("psrt,tp", C["qq1"], Gu @ Gu.conj().T) \ - 3*my_einsum("psrt,tp", C["qq3"], Gu @ Gu.conj().T)) \ - 6*my_einsum("rspt,tp", C["qu1"], Gu.conj().T @ Gu) \ + 6*my_einsum("rspt,tp", C["qd1"], Gd.conj().T @ Gd) \ + 2*GammaH*C["phiq1"] \ + Gammaq @ C["phiq1"] \ + C["phiq1"] @ Gammaq #I3 #co Beta["phiq3"] = 2/3*g**2*(1/4*C["phiBox"] \ + np.trace(C["phil3"]) \ + 3*np.trace(C["phiq3"]))*I3 \ - 17/3*g**2*C["phiq3"] \ + 2/3*g**2*(my_einsum("ttrs", C["lq3"]) \ + my_einsum("rtts", C["qq1"]) \ + 6*my_einsum("rstt", C["qq3"]) \ - my_einsum("rtts", C["qq3"])) \ - 1/2*C["phiBox"]*(Gu @ Gu.conj().T \ + Gd @ Gd.conj().T) \ + 1/2*(3*Gd @ Gd.conj().T @ C["phiq1"] \ - 3*Gu @ Gu.conj().T @ C["phiq1"] \ + 3*C["phiq1"] @ Gd @ Gd.conj().T \ - 3*C["phiq1"] @ Gu @ Gu.conj().T \ + Gd @ Gd.conj().T @ C["phiq3"] \ + Gu @ Gu.conj().T @ C["phiq3"] \ + C["phiq3"] @ Gd @ Gd.conj().T \ + C["phiq3"] @ Gu @ Gu.conj().T) \ - 2*(6*my_einsum("rspt,tp", C["qq3"], Gd @ Gd.conj().T) \ + my_einsum("rtps,tp", C["qq1"], Gd @ Gd.conj().T) \ - my_einsum("rtps,tp", C["qq3"], Gd @ Gd.conj().T) \ + 6*my_einsum("rspt,tp", C["qq3"], Gu @ Gu.conj().T) \ + my_einsum("rtps,tp", C["qq1"], Gu @ Gu.conj().T) \ - my_einsum("rtps,tp", C["qq3"], Gu @ Gu.conj().T)) \ - 2*my_einsum("ptrs,tp", C["lq3"], Ge @ Ge.conj().T) \ + 2*GammaH*C["phiq3"] \ + Gammaq @ C["phiq3"] \ + C["phiq3"] @ Gammaq #I3 #co Beta["phiu"] = 1/3*XiB*gp**2*I3 \ + 1/3*gp**2*C["phiu"] \ - 2/3*gp**2*(my_einsum("ttrs", C["eu"]) \ + my_einsum("ttrs", C["lu"]) \ - my_einsum("ttrs", C["qu1"]) \ + my_einsum("rstt", C["ud1"]) \ - 4*my_einsum("rstt", C["uu"]) \ - 4/3*my_einsum("rtts", C["uu"])) \ - (C["phiBox"] \ + C["phiD"])*Gu.conj().T @ Gu \ - 2*Gu.conj().T @ C["phiq1"] @ Gu \ + 3*(Gu.conj().T @ Gu @ C["phiu"] \ + C["phiu"] @ Gu.conj().T @ Gu) \ + Gu.conj().T @ Gd @ C["phiud"].conj().T \ + C["phiud"] @ Gd.conj().T @ Gu \ - 4*(3*my_einsum("rspt,tp", C["uu"], Gu.conj().T @ Gu) \ + my_einsum("rtps,tp", C["uu"], Gu.conj().T @ Gu)) \ + 2*my_einsum("ptrs,tp", C["eu"], Ge.conj().T @ Ge) \ - 2*my_einsum("ptrs,tp", C["lu"], Ge @ Ge.conj().T) \ + 6*my_einsum("rspt,tp", C["ud1"], Gd.conj().T @ Gd) \ - 6*my_einsum("ptrs,tp", C["qu1"], Gd @ Gd.conj().T) \ + 6*my_einsum("ptrs,tp", C["qu1"], Gu @ Gu.conj().T) \ + 2*GammaH*C["phiu"] \ + Gammau @ C["phiu"] \ + C["phiu"] @ Gammau #I3 #co Beta["phid"] = -1/6*XiB*gp**2*I3 \ + 1/3*gp**2*C["phid"] \ - 2/3*gp**2*(2*my_einsum("rstt", C["dd"]) \ + 2/3*my_einsum("rtts", C["dd"]) \ + my_einsum("ttrs", C["ed"]) \ + my_einsum("ttrs", C["ld"]) \ - my_einsum("ttrs", C["qd1"]) \ - 2*my_einsum("ttrs", C["ud1"])) \ + (C["phiBox"] \ + C["phiD"])*Gd.conj().T @ Gd \ - 2*Gd.conj().T @ C["phiq1"] @ Gd \ + 3*(Gd.conj().T @ Gd @ C["phid"] \ + C["phid"] @ Gd.conj().T @ Gd) \ - Gd.conj().T @ Gu @ C["phiud"] \ - C["phiud"].conj().T @ Gu.conj().T @ Gd \ + 4*(3*my_einsum("rspt,tp", C["dd"], Gd.conj().T @ Gd) \ + my_einsum("rtps,tp", C["dd"], Gd.conj().T @ Gd)) \ + 2*my_einsum("ptrs,tp", C["ed"], Ge.conj().T @ Ge) \ - 2*my_einsum("ptrs,tp", C["ld"], Ge @ Ge.conj().T) \ - 6*my_einsum("ptrs,tp", C["ud1"], Gu.conj().T @ Gu) \ - 6*my_einsum("ptrs,tp", C["qd1"], Gd @ Gd.conj().T) \ + 6*my_einsum("ptrs,tp", C["qd1"], Gu @ Gu.conj().T) \ + 2*GammaH*C["phid"] \ + Gammad @ C["phid"] \ + C["phid"] @ Gammad #co Beta["phiud"] = -3*gp**2*C["phiud"] \ + (2*C["phiBox"] \ - C["phiD"])*Gu.conj().T @ Gd \ - 2*Gu.conj().T @ Gd @ C["phid"] \ + 2*C["phiu"] @ Gu.conj().T @ Gd \ + 4*(my_einsum("rtps,tp", C["ud1"], Gu.conj().T @ Gd) \ + 4/3*my_einsum("rtps,tp", C["ud8"], Gu.conj().T @ Gd)) \ + 2*Gu.conj().T @ Gu @ C["phiud"] \ + 2*C["phiud"] @ Gd.conj().T @ Gd \ + 2*GammaH*C["phiud"] \ + Gammau @ C["phiud"] \ + C["phiud"] @ Gammad """Dimension-5""" Beta["llphiphi"] = (2*Lambda \ - 3*g**2 \ + 2*GammaH)*C["llphiphi"]-3/2*(C["llphiphi"] @ Ge @ Ge.conj().T \ + Ge.conj() @ Ge.T @ C["llphiphi"]) """(3,3,3,3)""" # the einsum function is strong Beta["ll"] = -1/6*gp**2*my_einsum("st,pr", C["phil1"], I3) \ - 1/6*g**2*(my_einsum("st,pr", C["phil3"], I3) \ - 2*my_einsum("sr,pt", C["phil3"], I3)) \ + 1/3*gp**2*(2*my_einsum("prww,st", C["ll"], I3) \ + my_einsum("pwwr,st", C["ll"], I3)) \ - 1/3*g**2*my_einsum("pwwr,st", C["ll"], I3) \ + 2/3*g**2*my_einsum("swwr,pt", C["ll"], I3) \ - 1/3*gp**2*my_einsum("prww,st", C["lq1"], I3) \ - g**2*my_einsum("prww,st", C["lq3"], I3) \ + 2*g**2*my_einsum("ptww,rs", C["lq3"], I3) \ + 1/3*gp**2*( \ - 2*my_einsum("prww,st", C["lu"], I3) \ + my_einsum("prww,st", C["ld"], I3) \ + my_einsum("prww,st", C["le"], I3)) \ - 1/2*(my_einsum("pr,st", Ge @ Ge.conj().T, C["phil1"]) \ - my_einsum("pr,st", Ge @ Ge.conj().T, C["phil3"])) \ - my_einsum("pt,sr", Ge @ Ge.conj().T, C["phil3"]) \ - 1/2*my_einsum("sv,tw,prvw", Ge, np.conj(Ge), C["le"]) \ + my_einsum("pv,vrst", Gammal, C["ll"]) \ + my_einsum("pvst,vr", C["ll"], Gammal) \ - 1/6*gp**2*my_einsum("pr,st", C["phil1"], I3) \ - 1/6*g**2*(my_einsum("pr,st", C["phil3"], I3) \ - 2*my_einsum("pt,sr", C["phil3"], I3)) \ + 1/3*gp**2*(2*my_einsum("stww,pr", C["ll"], I3) \ + my_einsum("swwt,pr", C["ll"], I3)) \ - 1/3*g**2*my_einsum("swwt,pr", C["ll"], I3) \ + 2/3*g**2*my_einsum("pwwt,sr", C["ll"], I3) \ - 1/3*gp**2*my_einsum("stww,pr", C["lq1"], I3) \ - g**2*my_einsum("stww,pr", C["lq3"], I3) \ + 2*g**2*my_einsum("srww,tp", C["lq3"], I3) \ + 1/3*gp**2*( \ - 2*my_einsum("stww,pr", C["lu"], I3) \ + my_einsum("stww,pr", C["ld"], I3) \ + my_einsum("stww,pr", C["le"], I3)) \ - 1/2*(my_einsum("st,pr", Ge @ Ge.conj().T, C["phil1"]) \ - my_einsum("st,pr", Ge @ Ge.conj().T, C["phil3"])) \ - my_einsum("sr,pt", Ge @ Ge.conj().T, C["phil3"]) \ - 1/2*my_einsum("pv,rw,stvw", Ge, np.conj(Ge), C["le"]) \ + my_einsum("sv,vtpr", Gammal, C["ll"]) \ + my_einsum("svpr,vt", C["ll"], Gammal) \ + 6*g**2*my_einsum("ptsr", C["ll"]) \ + 3*(gp**2 \ - g**2)*my_einsum("prst", C["ll"]) Beta["qq1"] = 1/18*gp**2*my_einsum("st,pr", C["phiq1"], I3) \ - 1/9*gp**2*my_einsum("wwst,pr", C["lq1"], I3) \ + 1/9*gp**2*(2*my_einsum("prww,st", C["qq1"], I3) \ + 1/3*(my_einsum("pwwr,st", C["qq1"], I3) \ + 3*my_einsum("pwwr,st", C["qq3"], I3))) \ + 1/3*gs**2*(my_einsum("swwr,pt", C["qq1"], I3) \ + 3*my_einsum("swwr,pt", C["qq3"], I3)) \ - 2/9*gs**2*(my_einsum("pwwr,st", C["qq1"], I3) \ + 3*my_einsum("pwwr,st", C["qq3"], I3)) \ + 2/9*gp**2*my_einsum("prww,st", C["qu1"], I3) \ - 1/9*gp**2*my_einsum("prww,st", C["qd1"], I3) \ + 1/12*gs**2*(my_einsum("srww,pt", C["qu8"], I3) \ + my_einsum("srww,pt", C["qd8"], I3)) \ - 1/18*gs**2*(my_einsum("prww,st", C["qu8"], I3) \ + my_einsum("prww,st", C["qd8"], I3)) \ - 1/9*gp**2*my_einsum("prww,st", C["qe"], I3) \ + 1/2*(my_einsum("pr,st", Gu @ Gu.conj().T, C["phiq1"]) \ - my_einsum("pr,st", Gd @ Gd.conj().T, C["phiq1"])) \ - 1/2*(my_einsum("pv,rw,stvw", Gu, np.conj(Gu), C["qu1"]) \ - 1/6*my_einsum("pv,rw,stvw", Gu, np.conj(Gu), C["qu8"])) \ - 1/2*(my_einsum("pv,rw,stvw", Gd, np.conj(Gd), C["qd1"]) \ - 1/6*my_einsum("pv,rw,stvw", Gd, np.conj(Gd), C["qd8"])) \ - 1/8*(my_einsum("pv,tw,srvw", Gu, np.conj(Gu), C["qu8"]) \ + my_einsum("pv,tw,srvw", Gd, np.conj(Gd), C["qd8"])) \ - 1/8*(my_einsum("tw,rv,pvsw", np.conj(Gd), np.conj(Gu), C["quqd1"]) \ - 1/6*my_einsum("tw,rv,pvsw", np.conj(Gd), np.conj(Gu), C["quqd8"])) \ - 1/8*(my_einsum("sw,pv,rvtw", Gd, Gu, np.conj(C["quqd1"])) \ - 1/6*my_einsum("sw,pv,rvtw", Gd, Gu, np.conj(C["quqd8"]))) \ + 1/16*(my_einsum("tw,rv,svpw", np.conj(Gd), np.conj(Gu), C["quqd8"]) \ + my_einsum("sw,pv,tvrw", Gd, Gu, np.conj(C["quqd8"]))) \ + my_einsum("pv,vrst", Gammaq, C["qq1"]) \ + my_einsum("pvst,vr", C["qq1"], Gammaq) \ + 1/18*gp**2*my_einsum("pr,st", C["phiq1"], I3) \ - 1/9*gp**2*my_einsum("wwpr,st", C["lq1"], I3) \ + 1/9*gp**2*(2*my_einsum("stww,pr", C["qq1"], I3) \ + 1/3*(my_einsum("swwt,pr", C["qq1"], I3) \ + 3*my_einsum("swwt,pr", C["qq3"], I3))) \ + 1/3*gs**2*(my_einsum("pwwt,sr", C["qq1"], I3) \ + 3*my_einsum("pwwt,sr", C["qq3"], I3)) \ - 2/9*gs**2*(my_einsum("swwt,pr", C["qq1"], I3) \ + 3*my_einsum("swwt,pr", C["qq3"], I3)) \ + 2/9*gp**2*my_einsum("stww,pr", C["qu1"], I3) \ - 1/9*gp**2*my_einsum("stww,pr", C["qd1"], I3) \ + 1/12*gs**2*(my_einsum("ptww,sr", C["qu8"], I3) \ + my_einsum("ptww,sr", C["qd8"], I3)) \ - 1/18*gs**2*(my_einsum("stww,pr", C["qu8"], I3) \ + my_einsum("stww,pr", C["qd8"], I3)) \ - 1/9*gp**2*my_einsum("stww,pr", C["qe"], I3) \ + 1/2*(my_einsum("st,pr", Gu @ Gu.conj().T, C["phiq1"]) \ - my_einsum("st,pr", Gd @ Gd.conj().T, C["phiq1"])) \ - 1/2*(my_einsum("sv,tw,prvw", Gu, np.conj(Gu), C["qu1"]) \ - 1/6*my_einsum("sv,tw,prvw", Gu, np.conj(Gu), C["qu8"])) \ - 1/2*(my_einsum("sv,tw,prvw", Gd, np.conj(Gd), C["qd1"]) \ - 1/6*my_einsum("sv,tw,prvw", Gd, np.conj(Gd), C["qd8"])) \ - 1/8*(my_einsum("sv,rw,ptvw", Gu, np.conj(Gu), C["qu8"]) \ + my_einsum("sv,rw,ptvw", Gd, np.conj(Gd), C["qd8"])) \ - 1/8*(my_einsum("rw,tv,svpw", np.conj(Gd), np.conj(Gu), C["quqd1"]) \ - 1/6*my_einsum("rw,tv,svpw", np.conj(Gd), np.conj(Gu), C["quqd8"])) \ - 1/8*(my_einsum("pw,sv,tvrw", Gd, Gu, np.conj(C["quqd1"])) \ - 1/6*my_einsum("pw,sv,tvrw", Gd, Gu, np.conj(C["quqd8"]))) \ + 1/16*(my_einsum("rw,tv,pvsw", np.conj(Gd), np.conj(Gu), C["quqd8"]) \ + my_einsum("pw,sv,rvtw", Gd, Gu, np.conj(C["quqd8"]))) \ + my_einsum("sv,vtpr", Gammaq, C["qq1"]) \ + my_einsum("svpr,vt", C["qq1"], Gammaq) \ + 9*g**2*my_einsum("prst", C["qq3"]) \ - 2*(gs**2 \ - 1/6*gp**2)*my_einsum("prst", C["qq1"]) \ + 3*gs**2*(my_einsum("ptsr", C["qq1"]) \ + 3*my_einsum("ptsr", C["qq3"])) Beta["qq3"] = 1/6*g**2*my_einsum("st,pr", C["phiq3"], I3) \ + 1/3*g**2*my_einsum("wwst,pr", C["lq3"], I3) \ + 1/3*g**2*(my_einsum("pwwr,st", C["qq1"], I3) \ - my_einsum("pwwr,st", C["qq3"], I3)) \ + 2*g**2*my_einsum("prww,st", C["qq3"], I3) \ + 1/3*gs**2*(my_einsum("swwr,pt", C["qq1"], I3) \ + 3*my_einsum("swwr,pt", C["qq3"], I3)) \ + 1/12*gs**2*(my_einsum("srww,pt", C["qu8"], I3) \ + my_einsum("srww,pt", C["qd8"], I3)) \ - 1/2*(my_einsum("pr,st", Gu @ Gu.conj().T, C["phiq3"]) \ + my_einsum("pr,st", Gd @ Gd.conj().T, C["phiq3"])) \ - 1/8*(my_einsum("pv,tw,srvw", Gu, np.conj(Gu), C["qu8"]) \ + my_einsum("pv,tw,srvw", Gd, np.conj(Gd), C["qd8"])) \ + 1/8*(my_einsum("tw,rv,pvsw", np.conj(Gd), np.conj(Gu), C["quqd1"]) \ - 1/6*my_einsum("tw,rv,pvsw", np.conj(Gd), np.conj(Gu), C["quqd8"])) \ + 1/8*(my_einsum("sw,pv,rvtw", Gd, Gu, np.conj(C["quqd1"])) \ - 1/6*my_einsum("sw,pv,rvtw", Gd, Gu, np.conj(C["quqd8"]))) \ - 1/16*(my_einsum("tw,rv,svpw", np.conj(Gd), np.conj(Gu), C["quqd8"]) \ + my_einsum("sw,pv,tvrw", Gd, Gu, np.conj(C["quqd8"]))) \ + my_einsum("pv,vrst", Gammaq, C["qq3"]) \ + my_einsum("pvst,vr", C["qq3"], Gammaq) \ + 1/6*g**2*my_einsum("pr,st", C["phiq3"], I3) \ + 1/3*g**2*my_einsum("wwpr,st", C["lq3"], I3) \ + 1/3*g**2*(my_einsum("swwt,pr", C["qq1"], I3) \ - my_einsum("swwt,pr", C["qq3"], I3)) \ + 2*g**2*my_einsum("stww,pr", C["qq3"], I3) \ + 1/3*gs**2*(my_einsum("pwwt,sr", C["qq1"], I3) \ + 3*my_einsum("pwwt,sr", C["qq3"], I3)) \ + 1/12*gs**2*(my_einsum("ptww,sr", C["qu8"], I3) \ + my_einsum("ptww,sr", C["qd8"], I3)) \ - 1/2*(my_einsum("st,pr", Gu @ Gu.conj().T, C["phiq3"]) \ + my_einsum("st,pr", Gd @ Gd.conj().T, C["phiq3"])) \ - 1/8*(my_einsum("sv,rw,ptvw", Gu, np.conj(Gu), C["qu8"]) \ + my_einsum("sv,rw,ptvw", Gd, np.conj(Gd), C["qd8"])) \ + 1/8*(my_einsum("rw,tv,svpw", np.conj(Gd), np.conj(Gu), C["quqd1"]) \ - 1/6*my_einsum("rw,tv,svpw", np.conj(Gd), np.conj(Gu), C["quqd8"])) \ + 1/8*(my_einsum("pw,sv,tvrw", Gd, Gu, np.conj(C["quqd1"])) \ - 1/6*my_einsum("pw,sv,tvrw", Gd, Gu, np.conj(C["quqd8"]))) \ - 1/16*(my_einsum("rw,tv,pvsw", np.conj(Gd), np.conj(Gu), C["quqd8"]) \ + my_einsum("pw,sv,rvtw", Gd, Gu, np.conj(C["quqd8"]))) \ + my_einsum("sv,vtpr", Gammaq, C["qq3"]) \ + my_einsum("svpr,vt", C["qq3"], Gammaq) \ + 3*gs**2*(my_einsum("ptsr", C["qq1"]) \ - my_einsum("ptsr", C["qq3"])) \ - 2*(gs**2 \ + 3*g**2 \ - 1/6*gp**2)*my_einsum("prst", C["qq3"]) \ + 3*g**2*my_einsum("prst", C["qq1"]) #the terms are equal, but the order is not. No wonder if you check some differences inside Beta["lq1"] = -1/3*gp**2*my_einsum("st,pr", C["phiq1"], I3) \ + 1/9*gp**2*my_einsum("pr,st", C["phil1"], I3) \ - 2/9*gp**2*(2*my_einsum("prww,st", C["ll"], I3) \ + my_einsum("pwwr,st", C["ll"], I3)) \ + 2/9*gp**2*my_einsum("prww,st", C["lq1"], I3) \ + 2/3*gp**2*my_einsum("wwst,pr", C["lq1"], I3) \ - 2/9*gp**2*(6*my_einsum("stww,pr", C["qq1"], I3) \ + my_einsum("swwt,pr", C["qq1"], I3) \ + 3*my_einsum("swwt,pr", C["qq3"], I3)) \ - 2/3*gp**2*(2*my_einsum("stww,pr", C["qu1"], I3) \ - my_einsum("stww,pr", C["qd1"], I3) \ - my_einsum("stww,pr", C["qe"], I3)) \ + 2/9*gp**2*(2*my_einsum("prww,st", C["lu"], I3) \ - my_einsum("prww,st", C["ld"], I3) \ - my_einsum("prww,st", C["le"], I3)) \ - gp**2*my_einsum("prst", C["lq1"]) \ + 9*g**2*my_einsum("prst", C["lq3"]) \ - my_einsum("pr,st", Ge @ Ge.conj().T, C["phiq1"]) \ + my_einsum("st,pr", Gu @ Gu.conj().T, C["phil1"]) \ - my_einsum("st,pr", Gd @ Gd.conj().T, C["phil1"]) \ + 1/4*(my_einsum("tw,rv,pvsw", np.conj(Gu), np.conj(Ge), C["lequ1"]) \ - 12*my_einsum("tw,rv,pvsw", np.conj(Gu), np.conj(Ge), C["lequ3"]) \ + my_einsum("sw,pv,rvtw", Gu, Ge, np.conj(C["lequ1"])) \ - 12*my_einsum("sw,pv,rvtw", Gu, Ge, np.conj(C["lequ3"]))) \ - my_einsum("sv,tw,prvw", Gu, np.conj(Gu), C["lu"]) \ - my_einsum("sv,tw,prvw", Gd, np.conj(Gd), C["ld"]) \ - my_einsum("pv,rw,stvw", Ge, np.conj(Ge), C["qe"]) \ + 1/4*(my_einsum("sw,rv,pvwt", Gd, np.conj(Ge), C["ledq"]) \ + my_einsum("pv,tw,rvws", Ge, np.conj(Gd), np.conj(C["ledq"]))) \ + my_einsum("pv,vrst", Gammal, C["lq1"]) \ + my_einsum("sv,prvt", Gammaq, C["lq1"]) \ + my_einsum("pvst,vr", C["lq1"], Gammal) \ + my_einsum("prsv,vt", C["lq1"], Gammaq) Beta["lq3"] = 1/3*g**2*(my_einsum("st,pr", C["phiq3"], I3) \ + my_einsum("pr,st", C["phil3"], I3)) \ + 2/3*g**2*(3*my_einsum("prww,st", C["lq3"], I3) \ + my_einsum("wwst,pr", C["lq3"], I3)) \ + 2/3*g**2*(6*my_einsum("stww,pr", C["qq3"], I3) \ + my_einsum("swwt,pr", C["qq1"], I3) \ - my_einsum("swwt,pr", C["qq3"], I3)) \ + 2/3*g**2*my_einsum("pwwr,st", C["ll"], I3) \ + 3*g**2*my_einsum("prst", C["lq1"]) \ - (6*g**2 \ + gp**2)*my_einsum("prst", C["lq3"]) \ - my_einsum("pr,st", Ge @ Ge.conj().T, C["phiq3"]) \ - my_einsum("st,pr", Gu @ Gu.conj().T, C["phil3"]) \ - my_einsum("st,pr", Gd @ Gd.conj().T, C["phil3"]) \ - 1/4*(my_einsum("tw,rv,pvsw", np.conj(Gu), np.conj(Ge), C["lequ1"]) \ - 12*my_einsum("tw,rv,pvsw", np.conj(Gu), np.conj(Ge), C["lequ3"]) \ + my_einsum("sw,pv,rvtw", Gu, Ge, np.conj(C["lequ1"])) \ - 12*my_einsum("sw,pv,rvtw", Gu, Ge, np.conj(C["lequ3"]))) \ + 1/4*(my_einsum("sw,rv,pvwt", Gd, np.conj(Ge), C["ledq"]) \ + my_einsum("pv,tw,rvws", Ge, np.conj(Gd), np.conj(C["ledq"]))) \ + my_einsum("pv,vrst", Gammal, C["lq3"]) \ + my_einsum("sv,prvt", Gammaq, C["lq3"]) \ + my_einsum("pvst,vr", C["lq3"], Gammal) \ + my_einsum("prsv,vt", C["lq3"], Gammaq) #order Beta["ee"] = -1/3*gp**2*my_einsum("st,pr", C["phie"], I3) \ + 2/3*gp**2*(my_einsum("wwpr,st", C["le"], I3) \ - my_einsum("wwpr,st", C["qe"], I3) \ - 2*my_einsum("prww,st", C["eu"], I3) \ + my_einsum("prww,st", C["ed"], I3) \ + 4*my_einsum("prww,st", C["ee"], I3)) \ + my_einsum("pr,st", Ge.conj().T @ Ge, C["phie"]) \ - my_einsum("wr,vp,vwst", Ge, np.conj(Ge), C["le"]) \ + my_einsum("pv,vrst", Gammae, C["ee"]) \ + my_einsum("pvst,vr", C["ee"], Gammae) \ - 1/3*gp**2*my_einsum("pr,st", C["phie"], I3) \ + 2/3*gp**2*(my_einsum("wwst,pr", C["le"], I3) \ - my_einsum("wwst,pr", C["qe"], I3) \ - 2*my_einsum("stww,pr", C["eu"], I3) \ + my_einsum("stww,pr", C["ed"], I3) \ + 4*my_einsum("wwst,pr", C["ee"], I3)) \ + my_einsum("st,pr", Ge.conj().T @ Ge, C["phie"]) \ - my_einsum("wt,vs,vwpr", Ge, np.conj(Ge), C["le"]) \ + my_einsum("sv,vtpr", Gammae, C["ee"]) \ + my_einsum("svpr,vt", C["ee"], Gammae) \ + 12*gp**2*my_einsum("prst", C["ee"]) #order Beta["uu"] = 2/9*gp**2*my_einsum("st,pr", C["phiu"], I3) \ - 4/9*gp**2*(my_einsum("wwst,pr", C["eu"], I3) \ + my_einsum("wwst,pr", C["lu"], I3) \ - my_einsum("wwst,pr", C["qu1"], I3) \ - 4*my_einsum("wwst,pr", C["uu"], I3) \ - 4/3*my_einsum("swwt,pr", C["uu"], I3)) \ - 1/9*gs**2*(my_einsum("wwst,pr", C["qu8"], I3) \ - 3*my_einsum("wwsr,pt", C["qu8"], I3)) \ + 2/3*gs**2*my_einsum("pwwt,rs", C["uu"], I3) \ - 2/9*gs**2*my_einsum("swwt,pr", C["uu"], I3) \ - 4/9*gp**2*my_einsum("stww,pr", C["ud1"], I3) \ - 1/18*gs**2*(my_einsum("stww,pr", C["ud8"], I3) \ - 3*my_einsum("srww,pt", C["ud8"], I3)) \ - my_einsum("pr,st", Gu.conj().T @ Gu, C["phiu"]) \ - (my_einsum("wr,vp,vwst", Gu, np.conj(Gu), C["qu1"]) \ - 1/6*my_einsum("wr,vp,vwst", Gu, np.conj(Gu), C["qu8"])) \ - 1/2*my_einsum("wr,vs,vwpt", Gu, np.conj(Gu), C["qu8"]) \ + my_einsum("pv,vrst", Gammau, C["uu"]) \ + my_einsum("pvst,vr", C["uu"], Gammau) \ + 2/9*gp**2*my_einsum("pr,st", C["phiu"], I3) \ - 4/9*gp**2*(my_einsum("wwpr,st", C["eu"], I3) \ + my_einsum("wwpr,st", C["lu"], I3) \ - my_einsum("wwpr,st", C["qu1"], I3) \ - 4*my_einsum("wwpr,st", C["uu"], I3) \ - 4/3*my_einsum("pwwr,st", C["uu"], I3)) \ - 1/9*gs**2*(my_einsum("wwpr,st", C["qu8"], I3) \ - 3*my_einsum("wwpt,sr", C["qu8"], I3)) \ + 2/3*gs**2*my_einsum("swwr,tp", C["uu"], I3) \ - 2/9*gs**2*my_einsum("pwwr,st", C["uu"], I3) \ - 4/9*gp**2*my_einsum("prww,st", C["ud1"], I3) \ - 1/18*gs**2*(my_einsum("prww,st", C["ud8"], I3) \ - 3*my_einsum("ptww,sr", C["ud8"], I3)) \ - my_einsum("st,pr", Gu.conj().T @ Gu, C["phiu"]) \ - (my_einsum("wt,vs,vwpr", Gu, np.conj(Gu), C["qu1"]) \ - 1/6*my_einsum("wt,vs,vwpr", Gu, np.conj(Gu), C["qu8"])) \ - 1/2*my_einsum("wt,vp,vwsr", Gu, np.conj(Gu), C["qu8"]) \ + my_einsum("sv,vtpr", Gammau, C["uu"]) \ + my_einsum("svpr,vt", C["uu"], Gammau) \ + 2*(8/3*gp**2 \ - gs**2)*my_einsum("prst", C["uu"]) \ + 6*gs**2*my_einsum("ptsr", C["uu"]) #order Beta["dd"] = -1/9*gp**2*my_einsum("st,pr", C["phid"], I3) \ + 2/9*gp**2*(my_einsum("wwst,pr", C["ed"], I3) \ + my_einsum("wwst,pr", C["ld"], I3) \ - my_einsum("wwst,pr", C["qd1"], I3) \ + 2*my_einsum("wwst,pr", C["dd"], I3) \ + 2/3*my_einsum("swwt,pr", C["dd"], I3)) \ - 1/9*gs**2*(my_einsum("wwst,pr", C["qd8"], I3) \ - 3*my_einsum("wwsr,pt", C["qd8"], I3)) \ + 2/3*gs**2*my_einsum("pwwt,rs", C["dd"], I3) \ - 2/9*gs**2*my_einsum("swwt,pr", C["dd"], I3) \ - 4/9*gp**2*my_einsum("wwst,pr", C["ud1"], I3) \ - 1/18*gs**2*(my_einsum("wwst,pr", C["ud8"], I3) \ - 3*my_einsum("wwsr,pt", C["ud8"], I3)) \ + my_einsum("pr,st", Gd.conj().T @ Gd, C["phid"]) \ - (my_einsum("wr,vp,vwst", Gd, np.conj(Gd), C["qd1"]) \ - 1/6*my_einsum("wr,vp,vwst", Gd, np.conj(Gd), C["qd8"])) \ - 1/2*my_einsum("wr,vs,vwpt", Gd, np.conj(Gd), C["qd8"]) \ + my_einsum("pv,vrst", Gammad, C["dd"]) \ + my_einsum("pvst,vr", C["dd"], Gammad) \ - 1/9*gp**2*my_einsum("pr,st", C["phid"], I3) \ + 2/9*gp**2*(my_einsum("wwpr,st", C["ed"], I3) \ + my_einsum("wwpr,st", C["ld"], I3) \ - my_einsum("wwpr,st", C["qd1"], I3) \ + 2*my_einsum("wwpr,st", C["dd"], I3) \ + 2/3*my_einsum("pwwr,st", C["dd"], I3)) \ - 1/9*gs**2*(my_einsum("wwpr,st", C["qd8"], I3) \ - 3*my_einsum("wwpt,sr", C["qd8"], I3)) \ + 2/3*gs**2*my_einsum("swwr,tp", C["dd"], I3) \ - 2/9*gs**2*my_einsum("pwwr,st", C["dd"], I3) \ - 4/9*gp**2*my_einsum("wwpr,st", C["ud1"], I3) \ - 1/18*gs**2*(my_einsum("wwpr,st", C["ud8"], I3) \ - 3*my_einsum("wwpt,sr", C["ud8"], I3)) \ + my_einsum("st,pr", Gd.conj().T @ Gd, C["phid"]) \ - (my_einsum("wt,vs,vwpr", Gd, np.conj(Gd), C["qd1"]) \ - 1/6*my_einsum("wt,vs,vwpr", Gd, np.conj(Gd), C["qd8"])) \ - 1/2*my_einsum("wt,vp,vwsr", Gd, np.conj(Gd), C["qd8"]) \ + my_einsum("sv,vtpr", Gammad, C["dd"]) \ + my_einsum("svpr,vt", C["dd"], Gammad) \ + 2*(2/3*gp**2 \ - gs**2)*my_einsum("prst", C["dd"]) \ + 6*gs**2*my_einsum("ptsr", C["dd"]) Beta["eu"] = -2/3*gp**2*(my_einsum("st,pr", C["phiu"], I3) \ + 2*(my_einsum("wwst,pr", C["qu1"], I3) \ - my_einsum("wwst,pr", C["lu"], I3) \ + 4*my_einsum("wwst,pr", C["uu"], I3) \ - my_einsum("wwst,pr", C["eu"], I3) \ - my_einsum("stww,pr", C["ud1"], I3)) \ + 8/3*my_einsum("swwt,pr", C["uu"], I3)) \ + 4/9*gp**2*(my_einsum("pr,st", C["phie"], I3) \ + 2*(my_einsum("wwpr,st", C["qe"], I3) \ - my_einsum("wwpr,st", C["le"], I3) \ - 4*my_einsum("prww,st", C["ee"], I3) \ + 2*my_einsum("prww,st", C["eu"], I3) \ - my_einsum("prww,st", C["ed"], I3))) \ - 8*gp**2*my_einsum("prst", C["eu"]) \ + 2*my_einsum("pr,st", Ge.conj().T @ Ge, C["phiu"]) \ - 2*my_einsum("st,pr", Gu.conj().T @ Gu, C["phie"]) \ + my_einsum("vp,ws,vrwt", np.conj(Ge), np.conj(Gu), C["lequ1"]) \ - 12*my_einsum("vp,ws,vrwt", np.conj(Ge), np.conj(Gu), C["lequ3"]) \ + my_einsum("vr,wt,vpws", Ge, Gu, np.conj(C["lequ1"])) \ - 12*my_einsum("vr,wt,vpws", Ge, Gu, np.conj(C["lequ3"])) \ - 2*my_einsum("vp,wr,vwst", np.conj(Ge), Ge, C["lu"]) \ - 2*my_einsum("vs,wt,vwpr", np.conj(Gu), Gu, C["qe"]) \ + my_einsum("pv,vrst", Gammae, C["eu"]) \ + my_einsum("sv,prvt", Gammau, C["eu"]) \ + my_einsum("pvst,vr", C["eu"], Gammae) \ + my_einsum("prsv,vt", C["eu"], Gammau) Beta["ed"] = -2/3*gp**2*(my_einsum("st,pr", C["phid"], I3) \ + 2*(my_einsum("wwst,pr", C["qd1"], I3) \ - my_einsum("wwst,pr", C["ld"], I3) \ - 2*my_einsum("wwst,pr", C["dd"], I3) \ - my_einsum("wwst,pr", C["ed"], I3) \ + 2*my_einsum("wwst,pr", C["ud1"], I3)) \ - 4/3*my_einsum("swwt,pr", C["dd"], I3)) \ - 2/9*gp**2*(my_einsum("pr,st", C["phie"], I3) \ + 2*(my_einsum("wwpr,st", C["qe"], I3) \ - my_einsum("wwpr,st", C["le"], I3) \ - 4*my_einsum("prww,st", C["ee"], I3) \ - my_einsum("prww,st", C["ed"], I3) \ + 2*my_einsum("prww,st", C["eu"], I3))) \ + 4*gp**2*my_einsum("prst", C["ed"]) \ + 2*my_einsum("pr,st", Ge.conj().T @ Ge, C["phid"]) \ + 2*my_einsum("st,pr", Gd.conj().T @ Gd, C["phie"]) \ - 2*my_einsum("vp,wr,vwst", np.conj(Ge), Ge, C["ld"]) \ - 2*my_einsum("vs,wt,vwpr", np.conj(Gd), Gd, C["qe"]) \ + my_einsum("vp,wt,vrsw", np.conj(Ge), Gd, C["ledq"]) \ + my_einsum("vr,ws,vptw", Ge, np.conj(Gd), np.conj(C["ledq"])) \ + my_einsum("pv,vrst", Gammae, C["ed"]) \ + my_einsum("sv,prvt", Gammad, C["ed"]) \ + my_einsum("pvst,vr", C["ed"], Gammae) \ + my_einsum("prsv,vt", C["ed"], Gammad) #order Beta["ud1"] = 4/9*gp**2*(my_einsum("st,pr", C["phid"], I3) \ + 2*(my_einsum("wwst,pr", C["qd1"], I3) \ - my_einsum("wwst,pr", C["ld"], I3) \ - 2*my_einsum("wwst,pr", C["dd"], I3) \ + 2*my_einsum("wwst,pr", C["ud1"], I3) \ - my_einsum("wwst,pr", C["ed"], I3)) \ - 4/3*my_einsum("swwt,pr", C["dd"], I3)) \ - 2/9*gp**2*(my_einsum("pr,st", C["phiu"], I3) \ + 2*(my_einsum("wwpr,st", C["qu1"], I3) \ - my_einsum("wwpr,st", C["lu"], I3) \ + 4*my_einsum("wwpr,st", C["uu"], I3) \ - my_einsum("prww,st", C["ud1"], I3) \ - my_einsum("wwpr,st", C["eu"], I3)) \ + 8/3*my_einsum("pwwr,st", C["uu"], I3)) \ - 8/3*(gp**2*my_einsum("prst", C["ud1"]) \ - gs**2*my_einsum("prst", C["ud8"])) \ - 2*my_einsum("pr,st", Gu.conj().T @ Gu, C["phid"]) \ + 2*my_einsum("st,pr", Gd.conj().T @ Gd, C["phiu"]) \ + 2/3*my_einsum("sr,pt", Gd.conj().T @ Gu, C["phiud"]) \ + 2/3*my_einsum("pt,rs", Gu.conj().T @ Gd, np.conj(C["phiud"])) \ + 1/3*(my_einsum("vs,wp,vrwt", np.conj(Gd), np.conj(Gu), C["quqd1"]) \ + 4/3*my_einsum("vs,wp,vrwt", np.conj(Gd), np.conj(Gu), C["quqd8"]) \ + my_einsum("vt,wr,vpws", Gd, Gu, np.conj(C["quqd1"])) \ + 4/3*my_einsum("vt,wr,vpws", Gd, Gu, np.conj(C["quqd8"]))) \ - my_einsum("ws,vp,vrwt", np.conj(Gd), np.conj(Gu), C["quqd1"]) \ - my_einsum("wt,vr,vpws", Gd, Gu, np.conj(C["quqd1"])) \ - 2*my_einsum("vp,wr,vwst", np.conj(Gu), Gu, C["qd1"]) \ - 2*my_einsum("vs,wt,vwpr", np.conj(Gd), Gd, C["qu1"]) \ + my_einsum("pv,vrst", Gammau, C["ud1"]) \ + my_einsum("sv,prvt", Gammad, C["ud1"]) \ + my_einsum("pvst,vr", C["ud1"], Gammau) \ + my_einsum("prsv,vt", C["ud1"], Gammad) #order Beta["ud8"] = 8/3*gs**2*my_einsum("pwwr,st", C["uu"], I3) \ + 8/3*gs**2*my_einsum("swwt,pr", C["dd"], I3) \ + 4/3*gs**2*my_einsum("wwpr,st", C["qu8"], I3) \ + 4/3*gs**2*my_einsum("wwst,pr", C["qd8"], I3) \ + 2/3*gs**2*my_einsum("prww,st", C["ud8"], I3) \ + 2/3*gs**2*my_einsum("wwst,pr", C["ud8"], I3) \ - 4*(2/3*gp**2 \ + gs**2)*my_einsum("prst", C["ud8"]) \ + 12*gs**2*my_einsum("prst", C["ud1"]) \ + 4*my_einsum("sr,pt", Gd.conj().T @ Gu, C["phiud"]) \ + 4*my_einsum("pt,rs", Gu.conj().T @ Gd, np.conj(C["phiud"])) \ + 2*(my_einsum("vs,wp,vrwt", np.conj(Gd), np.conj(Gu), C["quqd1"]) \ - 1/6*my_einsum("vs,wp,vrwt", np.conj(Gd), np.conj(Gu), C["quqd8"]) \ + my_einsum("vt,wr,vpws", Gd, Gu, np.conj(C["quqd1"])) \ - 1/6*my_einsum("vt,wr,vpws", Gd, Gu, np.conj(C["quqd8"]))) \ - 2*my_einsum("vp,wr,vwst", np.conj(Gu), Gu, C["qd8"]) \ - 2*my_einsum("vs,wt,vwpr", np.conj(Gd), Gd, C["qu8"]) \ - (my_einsum("ws,vp,vrwt", np.conj(Gd), np.conj(Gu), C["quqd8"]) \ + my_einsum("wt,vr,vpws", Gd, Gu, np.conj(C["quqd8"]))) \ + my_einsum("pv,vrst", Gammau, C["ud8"]) \ + my_einsum("sv,prvt", Gammad, C["ud8"]) \ + my_einsum("pvst,vr", C["ud8"], Gammau) \ + my_einsum("prsv,vt", C["ud8"], Gammad) Beta["le"] = -1/3*gp**2*my_einsum("st,pr", C["phie"], I3) \ - 2/3*gp**2*my_einsum("pr,st", C["phil1"], I3) \ + 8/3*gp**2*my_einsum("prww,st", C["ll"], I3) \ + 4/3*gp**2*my_einsum("pwwr,st", C["ll"], I3) \ - 4/3*gp**2*my_einsum("prww,st", C["lq1"], I3) \ - 2/3*gp**2*my_einsum("wwst,pr", C["qe"], I3) \ + 4/3*gp**2*my_einsum("prww,st", C["le"], I3) \ + 2/3*gp**2*my_einsum("wwst,pr", C["le"], I3) \ - 8/3*gp**2*my_einsum("prww,st", C["lu"], I3) \ + 4/3*gp**2*my_einsum("prww,st", C["ld"], I3) \ - 4/3*gp**2*my_einsum("stww,pr", C["eu"], I3) \ + 2/3*gp**2*my_einsum("stww,pr", C["ed"], I3) \ + 8/3*gp**2*my_einsum("wwst,pr", C["ee"], I3) \ - 6*gp**2*my_einsum("prst", C["le"]) \ + my_einsum("rs,pt", np.conj(Ge), Xie) \ + my_einsum("pt,rs", Ge, np.conj(Xie)) \ - my_einsum("pr,st", Ge @ Ge.conj().T, C["phie"]) \ + 2*my_einsum("st,pr", Ge.conj().T @ Ge, C["phil1"]) \ - 4*my_einsum("pv,rw,vtsw", Ge, np.conj(Ge), C["ee"]) \ + my_einsum("pw,vs,vrwt", Ge, np.conj(Ge), C["le"]) \ - 2*my_einsum("wt,vs,pwvr", Ge, np.conj(Ge), C["ll"]) \ - 4*my_einsum("wt,vs,prvw", Ge, np.conj(Ge), C["ll"]) \ + my_einsum("vt,rw,pvsw", Ge, np.conj(Ge), C["le"]) \ + my_einsum("pv,vrst", Gammal, C["le"]) \ + my_einsum("sv,prvt", Gammae, C["le"]) \ + my_einsum("pvst,vr", C["le"], Gammal) \ + my_einsum("prsv,vt", C["le"], Gammae) #order Beta["lu"] = -1/3*gp**2*my_einsum("st,pr", C["phiu"], I3) \ + 4/9*gp**2*my_einsum("pr,st", C["phil1"], I3) \ - 16/9*gp**2*my_einsum("prww,st", C["ll"], I3) \ - 8/9*gp**2*my_einsum("pwwr,st", C["ll"], I3) \ + 8/9*gp**2*my_einsum("prww,st", C["lq1"], I3) \ - 2/3*gp**2*my_einsum("wwst,pr", C["qu1"], I3) \ + 16/9*gp**2*my_einsum("prww,st", C["lu"], I3) \ + 2/3*gp**2*my_einsum("wwst,pr", C["lu"], I3) \ - 8/9*gp**2*my_einsum("prww,st", C["ld"], I3) \ - 8/9*gp**2*my_einsum("prww,st", C["le"], I3) \ + 2/3*gp**2*my_einsum("stww,pr", C["ud1"], I3) \ + 2/3*gp**2*my_einsum("wwst,pr", C["eu"], I3) \ - 8/3*gp**2*my_einsum("stww,pr", C["uu"], I3) \ - 8/9*gp**2*my_einsum("swwt,pr", C["uu"], I3) \ + 4*gp**2*my_einsum("prst", C["lu"]) \ - my_einsum("pr,st", Ge @ Ge.conj().T, C["phiu"]) \ - 2*my_einsum("st,pr", Gu.conj().T @ Gu, C["phil1"]) \ - 1/2*(my_einsum("rv,ws,pvwt", np.conj(Ge), np.conj(Gu), C["lequ1"]) \ + 12*my_einsum("rv,ws,pvwt", np.conj(Ge), np.conj(Gu), C["lequ3"])) \ - 1/2*(my_einsum("pv,wt,rvws", Ge, Gu, np.conj(C["lequ1"])) \ + 12*my_einsum("pv,wt,rvws", Ge, Gu, np.conj(C["lequ3"]))) \ - 2*my_einsum("vs,wt,prvw", np.conj(Gu), Gu, C["lq1"]) \ - my_einsum("rw,pv,vwst", np.conj(Ge), Ge, C["eu"]) \ + my_einsum("pv,vrst", Gammal, C["lu"]) \ + my_einsum("sv,prvt", Gammau, C["lu"]) \ + my_einsum("pvst,vr", C["lu"], Gammal) \ + my_einsum("prsv,vt", C["lu"], Gammau) Beta["ld"] = -1/3*gp**2*my_einsum("st,pr", C["phid"], I3) \ - 2/9*gp**2*my_einsum("pr,st", C["phil1"], I3) \ + 8/9*gp**2*my_einsum("prww,st", C["ll"], I3) \ + 4/9*gp**2*my_einsum("pwwr,st", C["ll"], I3) \ - 4/9*gp**2*my_einsum("prww,st", C["lq1"], I3) \ - 2/3*gp**2*my_einsum("wwst,pr", C["qd1"], I3) \ + 4/9*gp**2*my_einsum("prww,st", C["ld"], I3) \ + 2/3*gp**2*my_einsum("wwst,pr", C["ld"], I3) \ - 8/9*gp**2*my_einsum("prww,st", C["lu"], I3) \ + 4/9*gp**2*my_einsum("prww,st", C["le"], I3) \ - 4/3*gp**2*my_einsum("wwst,pr", C["ud1"], I3) \ + 2/3*gp**2*my_einsum("wwst,pr", C["ed"], I3) \ + 4/3*gp**2*my_einsum("stww,pr", C["dd"], I3) \ + 4/9*gp**2*my_einsum("swwt,pr", C["dd"], I3) \ - 2*gp**2*my_einsum("prst", C["ld"]) \ - my_einsum("pr,st", Ge @ Ge.conj().T, C["phid"]) \ + 2*my_einsum("st,pr", Gd.conj().T @ Gd, C["phil1"]) \ - 1/2*my_einsum("rv,wt,pvsw", np.conj(Ge), Gd, C["ledq"]) \ - 1/2*my_einsum("pv,ws,rvtw", Ge, np.conj(Gd), np.conj(C["ledq"])) \ - 2*my_einsum("vs,wt,prvw", np.conj(Gd), Gd, C["lq1"]) \ - my_einsum("rw,pv,vwst", np.conj(Ge), Ge, C["ed"]) \ + my_einsum("pv,vrst", Gammal, C["ld"]) \ + my_einsum("sv,prvt", Gammad, C["ld"]) \ + my_einsum("pvst,vr", C["ld"], Gammal) \ + my_einsum("prsv,vt", C["ld"], Gammad) Beta["qe"] = 1/9*gp**2*my_einsum("st,pr", C["phie"], I3) \ - 2/3*gp**2*my_einsum("pr,st", C["phiq1"], I3) \ - 8/3*gp**2*my_einsum("prww,st", C["qq1"], I3) \ - 4/9*gp**2*(my_einsum("pwwr,st", C["qq1"], I3) \ + 3*my_einsum("pwwr,st", C["qq3"], I3)) \ + 4/3*gp**2*my_einsum("wwpr,st", C["lq1"], I3) \ - 2/9*gp**2*my_einsum("wwst,pr", C["le"], I3) \ + 4/3*gp**2*my_einsum("prww,st", C["qe"], I3) \ + 2/9*gp**2*my_einsum("wwst,pr", C["qe"], I3) \ - 8/3*gp**2*my_einsum("prww,st", C["qu1"], I3) \ + 4/3*gp**2*my_einsum("prww,st", C["qd1"], I3) \ + 4/9*gp**2*my_einsum("stww,pr", C["eu"], I3) \ - 2/9*gp**2*my_einsum("stww,pr", C["ed"], I3) \ - 8/9*gp**2*my_einsum("wwst,pr", C["ee"], I3) \ + 2*gp**2*my_einsum("prst", C["qe"]) \ + my_einsum("pr,st", Gu @ Gu.conj().T, C["phie"]) \ - my_einsum("pr,st", Gd @ Gd.conj().T, C["phie"]) \ + 2*my_einsum("st,pr", Ge.conj().T @ Ge, C["phiq1"]) \ - 1/2*my_einsum("pw,vs,vtwr", Gd, np.conj(Ge), C["ledq"]) \ - 1/2*my_einsum("vt,rw,vswp", Ge, np.conj(Gd), np.conj(C["ledq"])) \ - 2*my_einsum("vs,wt,vwpr", np.conj(Ge), Ge, C["lq1"]) \ - 1/2*(my_einsum("rw,vs,vtpw", np.conj(Gu), np.conj(Ge), C["lequ1"]) \ + 12*my_einsum("rw,vs,vtpw", np.conj(Gu), np.conj(Ge), C["lequ3"])) \ - 1/2*(my_einsum("pw,vt,vsrw", Gu, Ge, np.conj(C["lequ1"])) \ + 12*my_einsum("pw,vt,vsrw", Gu, Ge, np.conj(C["lequ3"]))) \ - my_einsum("rw,pv,stvw", np.conj(Gd), Gd, C["ed"]) \ - my_einsum("rw,pv,stvw", np.conj(Gu), Gu, C["eu"]) \ + my_einsum("pv,vrst", Gammaq, C["qe"]) \ + my_einsum("sv,prvt", Gammae, C["qe"]) \ + my_einsum("pvst,vr", C["qe"], Gammaq) \ + my_einsum("prsv,vt", C["qe"], Gammae) Beta["qu1"] = 1/9*gp**2*my_einsum("st,pr", C["phiu"], I3) \ + 4/9*gp**2*my_einsum("pr,st", C["phiq1"], I3) \ + 16/9*gp**2*my_einsum("prww,st", C["qq1"], I3) \ + 8/27*gp**2*(my_einsum("pwwr,st", C["qq1"], I3) \ + 3*my_einsum("pwwr,st", C["qq3"], I3)) \ - 8/9*gp**2*my_einsum("wwpr,st", C["lq1"], I3) \ - 8/9*gp**2*my_einsum("prww,st", C["qe"], I3) \ - 8/9*gp**2*my_einsum("prww,st", C["qd1"], I3) \ + 16/9*gp**2*my_einsum("prww,st", C["qu1"], I3) \ + 2/9*gp**2*my_einsum("wwst,pr", C["qu1"], I3) \ - 2/9*gp**2*my_einsum("wwst,pr", C["lu"], I3) \ - 2/9*gp**2*my_einsum("wwst,pr", C["eu"], I3) \ - 2/9*gp**2*my_einsum("stww,pr", C["ud1"], I3) \ + 8/9*gp**2*my_einsum("stww,pr", C["uu"], I3) \ + 8/27*gp**2*my_einsum("swwt,pr", C["uu"], I3) \ - 4/3*gp**2*my_einsum("prst", C["qu1"]) \ - 8/3*gs**2*my_einsum("prst", C["qu8"]) \ + 1/3*my_einsum("rs,pt", np.conj(Gu), Xiu) \ + 1/3*my_einsum("pt,rs", Gu, np.conj(Xiu)) \ + my_einsum("pr,st", Gu @ Gu.conj().T, C["phiu"]) \ - my_einsum("pr,st", Gd @ Gd.conj().T, C["phiu"]) \ - 2*my_einsum("st,pr", Gu.conj().T @ Gu, C["phiq1"]) \ + 1/3*(my_einsum("pw,vs,vrwt", Gu, np.conj(Gu), C["qu1"]) \ + 4/3*my_einsum("pw,vs,vrwt", Gu, np.conj(Gu), C["qu8"])) \ + 1/3*(my_einsum("vt,rw,pvsw", Gu, np.conj(Gu), C["qu1"]) \ + 4/3*my_einsum("vt,rw,pvsw", Gu, np.conj(Gu), C["qu8"])) \ + 1/3*(my_einsum("rw,vs,ptvw", np.conj(Gd), np.conj(Gu), C["quqd1"]) \ + 4/3*my_einsum("rw,vs,ptvw", np.conj(Gd), np.conj(Gu), C["quqd8"])) \ + 1/3*(my_einsum("pw,vt,rsvw", Gd, Gu, np.conj(C["quqd1"])) \ + 4/3*my_einsum("pw,vt,rsvw", Gd, Gu, np.conj(C["quqd8"]))) \ + 1/2*my_einsum("rw,vs,vtpw", np.conj(Gd), np.conj(Gu), C["quqd1"]) \ + 1/2*my_einsum("pw,vt,vsrw", Gd, Gu, np.conj(C["quqd1"])) \ - 2/3*(my_einsum("vt,ws,pvwr", Gu, np.conj(Gu), C["qq1"]) \ + 3*my_einsum("vt,ws,pvwr", Gu, np.conj(Gu), C["qq3"])) \ - 4*my_einsum("wt,vs,prvw", Gu, np.conj(Gu), C["qq1"]) \ - 2/3*my_einsum("pv,rw,vtsw", Gu, np.conj(Gu), C["uu"]) \ - 2*my_einsum("pv,rw,vwst", Gu, np.conj(Gu), C["uu"]) \ - my_einsum("pv,rw,stvw", Gd, np.conj(Gd), C["ud1"]) \ + my_einsum("pv,vrst", Gammaq, C["qu1"]) \ + my_einsum("sv,prvt", Gammau, C["qu1"]) \ + my_einsum("pvst,vr", C["qu1"], Gammaq) \ + my_einsum("prsv,vt", C["qu1"], Gammau) Beta["qd1"] = 1/9*gp**2*my_einsum("st,pr", C["phid"], I3) \ - 2/9*gp**2*my_einsum("pr,st", C["phiq1"], I3) \ - 8/9*gp**2*my_einsum("prww,st", C["qq1"], I3) \ - 4/27*gp**2*(my_einsum("pwwr,st", C["qq1"], I3) \ + 3*my_einsum("pwwr,st", C["qq3"], I3)) \ + 4/9*gp**2*my_einsum("wwpr,st", C["lq1"], I3) \ + 4/9*gp**2*my_einsum("prww,st", C["qe"], I3) \ - 8/9*gp**2*my_einsum("prww,st", C["qu1"], I3) \ + 4/9*gp**2*my_einsum("prww,st", C["qd1"], I3) \ + 2/9*gp**2*my_einsum("wwst,pr", C["qd1"], I3) \ - 2/9*gp**2*my_einsum("wwst,pr", C["ld"], I3) \ - 2/9*gp**2*my_einsum("wwst,pr", C["ed"], I3) \ + 4/9*gp**2*my_einsum("wwst,pr", C["ud1"], I3) \ - 4/9*gp**2*my_einsum("stww,pr", C["dd"], I3) \ - 4/27*gp**2*my_einsum("swwt,pr", C["dd"], I3) \ + 2/3*gp**2*my_einsum("prst", C["qd1"]) \ - 8/3*gs**2*my_einsum("prst", C["qd8"]) \ + 1/3*my_einsum("rs,pt", np.conj(Gd), Xid) \ + 1/3*my_einsum("pt,rs", Gd, np.conj(Xid)) \ + my_einsum("pr,st", Gu @ Gu.conj().T, C["phid"]) \ - my_einsum("pr,st", Gd @ Gd.conj().T, C["phid"]) \ + 2*my_einsum("st,pr", Gd.conj().T @ Gd, C["phiq1"]) \ + 1/3*(my_einsum("pw,vs,vrwt", Gd, np.conj(Gd), C["qd1"]) \ + 4/3*my_einsum("pw,vs,vrwt", Gd, np.conj(Gd), C["qd8"])) \ + 1/3*(my_einsum("vt,rw,pvsw", Gd, np.conj(Gd), C["qd1"]) \ + 4/3*my_einsum("vt,rw,pvsw", Gd, np.conj(Gd), C["qd8"])) \ + 1/3*(my_einsum("rw,vs,vwpt", np.conj(Gu), np.conj(Gd), C["quqd1"]) \ + 4/3*my_einsum("rw,vs,vwpt", np.conj(Gu), np.conj(Gd), C["quqd8"])) \ + 1/3*(my_einsum("pw,vt,vwrs", Gu, Gd, np.conj(C["quqd1"])) \ + 4/3*my_einsum("pw,vt,vwrs", Gu, Gd, np.conj(C["quqd8"]))) \ + 1/2*my_einsum("ws,rv,pvwt", np.conj(Gd), np.conj(Gu), C["quqd1"]) \ + 1/2*my_einsum("pv,wt,rvws", Gu, Gd, np.conj(C["quqd1"])) \ - 2/3*(my_einsum("vt,ws,pvwr", Gd, np.conj(Gd), C["qq1"]) \ + 3*my_einsum("vt,ws,pvwr", Gd, np.conj(Gd), C["qq3"])) \ - 4*my_einsum("wt,vs,prvw", Gd, np.conj(Gd), C["qq1"]) \ - 2/3*my_einsum("pv,rw,vtsw", Gd, np.conj(Gd), C["dd"]) \ - 2*my_einsum("pv,rw,vwst", Gd, np.conj(Gd), C["dd"]) \ - my_einsum("pv,rw,vwst", Gu, np.conj(Gu), C["ud1"]) \ + my_einsum("pv,vrst", Gammaq, C["qd1"]) \ + my_einsum("sv,prvt", Gammad, C["qd1"]) \ + my_einsum("pvst,vr", C["qd1"], Gammaq) \ + my_einsum("prsv,vt", C["qd1"], Gammad) Beta["qu8"] = 8/3*gs**2*(my_einsum("pwwr,st", C["qq1"], I3) \ + 3*my_einsum("pwwr,st", C["qq3"], I3)) \ + 2/3*gs**2*my_einsum("prww,st", C["qu8"], I3) \ + 2/3*gs**2*my_einsum("prww,st", C["qd8"], I3) \ + 4/3*gs**2*my_einsum("wwst,pr", C["qu8"], I3) \ + 2/3*gs**2*my_einsum("stww,pr", C["ud8"], I3) \ + 8/3*gs**2*my_einsum("swwt,pr", C["uu"], I3) \ - (4/3*gp**2 \ + 14*gs**2)*my_einsum("prst", C["qu8"]) \ - 12*gs**2*my_einsum("prst", C["qu1"]) \ + 2*my_einsum("rs,pt", np.conj(Gu), Xiu) \ + 2*my_einsum("pt,rs", Gu, np.conj(Xiu)) \ + 2*(my_einsum("pw,vs,vrwt", Gu, np.conj(Gu), C["qu1"]) \ - 1/6*my_einsum("pw,vs,vrwt", Gu, np.conj(Gu), C["qu8"])) \ + 2*(my_einsum("vt,rw,pvsw", Gu, np.conj(Gu), C["qu1"]) \ - 1/6*my_einsum("vt,rw,pvsw", Gu, np.conj(Gu), C["qu8"])) \ + 2*(my_einsum("rw,vs,ptvw", np.conj(Gd), np.conj(Gu), C["quqd1"]) \ - 1/6*my_einsum("rw,vs,ptvw", np.conj(Gd), np.conj(Gu), C["quqd8"])) \ + 2*(my_einsum("pw,vt,rsvw", Gd, Gu, np.conj(C["quqd1"])) \ - 1/6*my_einsum("pw,vt,rsvw", Gd, Gu, np.conj(C["quqd8"]))) \ + 1/2*my_einsum("vs,rw,vtpw", np.conj(Gu), np.conj(Gd), C["quqd8"]) \ + 1/2*my_einsum("vt,pw,vsrw", Gu, Gd, np.conj(C["quqd8"])) \ - 4*(my_einsum("vt,ws,pvwr", Gu, np.conj(Gu), C["qq1"]) \ + 3*my_einsum("vt,ws,pvwr", Gu, np.conj(Gu), C["qq3"])) \ - 4*my_einsum("pv,rw,vtsw", Gu, np.conj(Gu), C["uu"]) \ - my_einsum("pv,rw,stvw", Gd, np.conj(Gd), C["ud8"]) \ + my_einsum("pv,vrst", Gammaq, C["qu8"]) \ + my_einsum("sv,prvt", Gammau, C["qu8"]) \ + my_einsum("pvst,vr", C["qu8"], Gammaq) \ + my_einsum("prsv,vt", C["qu8"], Gammau) Beta["qd8"] = 8/3*gs**2*(my_einsum("pwwr,st", C["qq1"], I3) \ + 3*my_einsum("pwwr,st", C["qq3"], I3)) \ + 2/3*gs**2*my_einsum("prww,st", C["qu8"], I3) \ + 2/3*gs**2*my_einsum("prww,st", C["qd8"], I3) \ + 4/3*gs**2*my_einsum("wwst,pr", C["qd8"], I3) \ + 2/3*gs**2*my_einsum("wwst,pr", C["ud8"], I3) \ + 8/3*gs**2*my_einsum("swwt,pr", C["dd"], I3) \ - (-2/3*gp**2 \ + 14*gs**2)*my_einsum("prst", C["qd8"]) \ - 12*gs**2*my_einsum("prst", C["qd1"]) \ + 2*my_einsum("rs,pt", np.conj(Gd), Xid) \ + 2*my_einsum("pt,rs", Gd, np.conj(Xid)) \ + 2*(my_einsum("pw,vs,vrwt", Gd, np.conj(Gd), C["qd1"]) \ - 1/6*my_einsum("pw,vs,vrwt", Gd, np.conj(Gd), C["qd8"])) \ + 2*(my_einsum("vt,rw,pvsw", Gd, np.conj(Gd), C["qd1"]) \ - 1/6*my_einsum("vt,rw,pvsw", Gd, np.conj(Gd), C["qd8"])) \ + 2*(my_einsum("rw,vs,vwpt", np.conj(Gu), np.conj(Gd), C["quqd1"]) \ - 1/6*my_einsum("rw,vs,vwpt", np.conj(Gu), np.conj(Gd), C["quqd8"])) \ + 2*(my_einsum("pw,vt,vwrs", Gu, Gd, np.conj(C["quqd1"])) \ - 1/6*my_einsum("pw,vt,vwrs", Gu, Gd, np.conj(C["quqd8"]))) \ + 1/2*my_einsum("vs,rw,pwvt", np.conj(Gd), np.conj(Gu), C["quqd8"]) \ + 1/2*my_einsum("vt,pw,rwvs", Gd, Gu, np.conj(C["quqd8"])) \ - 4*(my_einsum("vt,ws,pvwr", Gd, np.conj(Gd), C["qq1"]) \ + 3*my_einsum("vt,ws,pvwr", Gd, np.conj(Gd), C["qq3"])) \ - 4*my_einsum("pv,rw,vtsw", Gd, np.conj(Gd), C["dd"]) \ - my_einsum("pv,rw,vwst", Gu, np.conj(Gu), C["ud8"]) \ + my_einsum("pv,vrst", Gammaq, C["qd8"]) \ + my_einsum("sv,prvt", Gammad, C["qd8"]) \ + my_einsum("pvst,vr", C["qd8"], Gammaq) \ + my_einsum("prsv,vt", C["qd8"], Gammad) Beta["ledq"] = -(8/3*gp**2 \ + 8*gs**2)*my_einsum("prst", C["ledq"]) \ - 2*my_einsum("ts,pr", np.conj(Gd), Xie) \ - 2*my_einsum("pr,ts", Ge, np.conj(Xid)) \ + 2*my_einsum("pv,tw,vrsw", Ge, np.conj(Gd), C["ed"]) \ - 2*my_einsum("vr,tw,pvsw", Ge, np.conj(Gd), C["ld"]) \ + 2*my_einsum("vr,ws,pvwt", Ge, np.conj(Gd), C["lq1"]) \ + 6*my_einsum("vr,ws,pvwt", Ge, np.conj(Gd), C["lq3"]) \ - 2*my_einsum("pw,vs,vtwr", Ge, np.conj(Gd), C["qe"]) \ + 2*my_einsum("vs,tw,prvw", np.conj(Gd), np.conj(Gu), C["lequ1"]) \ + my_einsum("pv,vrst", Gammal, C["ledq"]) \ + my_einsum("sv,prvt", Gammad, C["ledq"]) \ + my_einsum("pvst,vr", C["ledq"], Gammae) \ + my_einsum("prsv,vt", C["ledq"], Gammaq) Beta["quqd1"] = 10/3*gp*my_einsum("st,pr", C["dB"], Gu) \ - 6*g*my_einsum("st,pr", C["dW"], Gu) \ - 20/9*gp*my_einsum("pt,sr", C["dB"], Gu) \ + 4*g*my_einsum("pt,sr", C["dW"], Gu) \ - 64/9*gs*my_einsum("pt,sr", C["dG"], Gu) \ - 2/3*gp*my_einsum("pr,st", C["uB"], Gd) \ - 6*g*my_einsum("pr,st", C["uW"], Gd) \ + 4/9*gp*my_einsum("sr,pt", C["uB"], Gd) \ + 4*g*my_einsum("sr,pt", C["uW"], Gd) \ - 64/9*gs*my_einsum("sr,pt", C["uG"], Gd) \ - 1/2*(11/9*gp**2 + 3*g**2 + 32*gs**2)*my_einsum("prst", C["quqd1"]) \ - 1/3*( - 5/9*gp**2 - 3*g**2 + 64/3*gs**2)*my_einsum("srpt", C["quqd1"]) \ - 4/9*( - 5/9*gp**2 - 3*g**2 + 28/3*gs**2)*my_einsum("srpt", C["quqd8"]) \ + 16/9*gs**2*my_einsum("prst", C["quqd8"]) \ - 2*my_einsum("pr,st", Gu, Xid) \ - 2*my_einsum("st,pr", Gd, Xiu) \ + 4/3*(my_einsum("vr,pw,svwt", Gu, Gd, C["qd1"]) \ + 4/3*my_einsum("vr,pw,svwt", Gu, Gd, C["qd8"]) \ + my_einsum("vt,sw,pvwr", Gd, Gu, C["qu1"]) \ + 4/3*my_einsum("vt,sw,pvwr", Gd, Gu, C["qu8"]) \ + my_einsum("pw,sv,vrwt", Gd, Gu, C["ud1"]) \ + 4/3*my_einsum("pw,sv,vrwt", Gd, Gu, C["ud8"])) \ + 8/3*(my_einsum("wt,vr,svpw", Gd, Gu, C["qq1"]) \ - 3*my_einsum("wt,vr,svpw", Gd, Gu, C["qq3"]) \ - 3*my_einsum("wt,vr,swpv", Gd, Gu, C["qq1"]) \ + 9*my_einsum("wt,vr,swpv", Gd, Gu, C["qq3"])) \ - 4*my_einsum("sw,pv,vrwt", Gd, Gu, C["ud1"]) \ + my_einsum("pv,vrst", Gammaq, C["quqd1"]) \ + my_einsum("sv,prvt", Gammaq, C["quqd1"]) \ + my_einsum("pvst,vr", C["quqd1"], Gammau) \ + my_einsum("prsv,vt", C["quqd1"], Gammad) Beta["quqd8"] = 8*gs*my_einsum("st,pr", C["dG"], Gu) \ - 40/3*gp*my_einsum("pt,sr", C["dB"], Gu) \ + 24*g*my_einsum("pt,sr", C["dW"], Gu) \ + 16/3*gs*my_einsum("pt,sr", C["dG"], Gu) \ + 8*gs*my_einsum("pr,st", C["uG"], Gd) \ + 8/3*gp*my_einsum("sr,pt", C["uB"], Gd) \ + 24*g*my_einsum("sr,pt", C["uW"], Gd) \ + 16/3*gs*my_einsum("sr,pt", C["uG"], Gd) \ + 8*gs**2*my_einsum("prst", C["quqd1"]) \ + (10/9*gp**2 + 6*g**2 + 16/3*gs**2)*my_einsum("srpt", C["quqd1"]) \ + (-11/18*gp**2 - 3/2*g**2 + 16/3*gs**2)*my_einsum("prst", C["quqd8"]) \ - 1/3*(5/9*gp**2 + 3*g**2 \ + 44/3*gs**2)*my_einsum("srpt", C["quqd8"]) \ + 8*(my_einsum("vr,pw,svwt", Gu, Gd, C["qd1"]) \ - 1/6*my_einsum("vr,pw,svwt", Gu, Gd, C["qd8"]) \ + my_einsum("vt,sw,pvwr", Gd, Gu, C["qu1"]) \ - 1/6*my_einsum("vt,sw,pvwr", Gd, Gu, C["qu8"]) \ + my_einsum("pw,sv,vrwt", Gd, Gu, C["ud1"]) \ - 1/6*my_einsum("pw,sv,vrwt", Gd, Gu, C["ud8"])) \ + 16*(my_einsum("wt,vr,svpw", Gd, Gu, C["qq1"]) \ - 3*my_einsum("wt,vr,svpw", Gd, Gu, C["qq3"])) \ - 4*my_einsum("sw,pv,vrwt", Gd, Gu, C["ud8"]) \ + my_einsum("pv,vrst", Gammaq, C["quqd8"]) \ + my_einsum("sv,prvt", Gammaq, C["quqd8"]) \ + my_einsum("pvst,vr", C["quqd8"], Gammau) \ + my_einsum("prsv,vt", C["quqd8"], Gammad) Beta["lequ1"] = -(11/3*gp**2 + 8*gs**2)*my_einsum("prst", C["lequ1"]) \ + (30*gp**2 + 18*g**2)*my_einsum("prst", C["lequ3"]) \ + 2*my_einsum("st,pr", Gu, Xie) \ + 2*my_einsum("pr,st", Ge, Xiu) \ + 2*my_einsum("sv,wt,prvw", Gd, Gu, C["ledq"]) \ + 2*my_einsum("pv,sw,vrwt", Ge, Gu, C["eu"]) \ + 2*my_einsum("vr,wt,pvsw", Ge, Gu, C["lq1"]) \ - 6*my_einsum("vr,wt,pvsw", Ge, Gu, C["lq3"]) \ - 2*my_einsum("vr,sw,pvwt", Ge, Gu, C["lu"]) \ - 2*my_einsum("pw,vt,svwr", Ge, Gu, C["qe"]) \ + my_einsum("pv,vrst", Gammal, C["lequ1"]) \ + my_einsum("sv,prvt", Gammaq, C["lequ1"]) \ + my_einsum("pvst,vr", C["lequ1"], Gammae) \ + my_einsum("prsv,vt", C["lequ1"], Gammau) Beta["lequ3"] = 5/6*gp*my_einsum("pr,st", C["eB"], Gu) \ - 3/2*g*my_einsum("st,pr", C["uW"], Ge) \ - 3/2*gp*my_einsum("st,pr", C["uB"], Ge) \ - 3/2*g*my_einsum("pr,st", C["eW"], Gu) \ + (2/9*gp**2 - 3*g**2 + 8/3*gs**2)*my_einsum("prst", C["lequ3"]) \ + 1/8*(5*gp**2 + 3*g**2)*my_einsum("prst", C["lequ1"]) \ - 1/2*my_einsum("sw,pv,vrwt", Gu, Ge, C["eu"]) \ - 1/2*my_einsum("vr,wt,pvsw", Ge, Gu, C["lq1"]) \ + 3/2*my_einsum("vr,wt,pvsw", Ge, Gu, C["lq3"]) \ - 1/2*my_einsum("vr,sw,pvwt", Ge, Gu, C["lu"]) \ - 1/2*my_einsum("pw,vt,svwr", Ge, Gu, C["qe"]) \ + my_einsum("pv,vrst", Gammal, C["lequ3"]) \ + my_einsum("sv,prvt", Gammaq, C["lequ3"]) \ + my_einsum("pvst,vr", C["lequ3"], Gammae) \ + my_einsum("prsv,vt", C["lequ3"], Gammau) Beta["duql"] = -(9/2*g**2 \ + 11/6*gp**2 \ + 4*gs**2)*my_einsum("prst", C["duql"]) \ - my_einsum("sv,wp,vrwt", np.conj(Gd), Gd, C["duql"]) \ - my_einsum("sv,wr,pvwt", np.conj(Gu), Gu, C["duql"]) \ + 2*my_einsum("tv,sw,prwv", np.conj(Ge), np.conj(Gu), C["duue"]) \ + my_einsum("tv,sw,pwrv", np.conj(Ge), np.conj(Gu), C["duue"]) \ + 4*my_einsum("vp,wr,vwst", Gd, Gu, C["qqql"]) \ + 4*my_einsum("vp,wr,wvst", Gd, Gu, C["qqql"]) \ - my_einsum("vp,wr,vswt", Gd, Gu, C["qqql"]) \ - my_einsum("vp,wr,wsvt", Gd, Gu, C["qqql"]) \ + 2*my_einsum("wp,tv,wsrv", Gd, np.conj(Ge), C["qque"]) \ + my_einsum("vp,vrst", Gd.conj().T @ Gd, C["duql"]) \ + my_einsum("vr,pvst", Gu.conj().T @ Gu, C["duql"]) \ + 1/2*(my_einsum("vs,prvt", Gu @ Gu.conj().T, C["duql"]) \ + my_einsum("vs,prvt", Gd @ Gd.conj().T, C["duql"])) \ + 1/2*my_einsum("vt,prsv", Ge @ Ge.conj().T, C["duql"]) Beta["qque"] = -(9/2*g**2 \ + 23/6*gp**2 + 4*gs**2)*my_einsum("prst", C["qque"]) \ - my_einsum("rv,ws,pwvt", np.conj(Gu), Gu, C["qque"]) \ + 1/2*my_einsum("wt,rv,vspw", Ge, np.conj(Gd), C["duql"]) \ - 1/2*(2*my_einsum("pv,rw,vwst", np.conj(Gd), np.conj(Gu), C["duue"]) \ + my_einsum("pv,rw,vswt", np.conj(Gd), np.conj(Gu), C["duue"])) \ + 1/2*( \ - 2*my_einsum("ws,vt,prwv", Gu, Ge, C["qqql"]) \ + my_einsum("ws,vt,pwrv", Gu, Ge, C["qqql"]) \ - 2*my_einsum("ws,vt,wprv", Gu, Ge, C["qqql"])) \ + 1/2*(my_einsum("vp,vrst", Gu @ Gu.conj().T, C["qque"]) \ + my_einsum("vp,vrst", Gd @ Gd.conj().T, C["qque"])) \ - my_einsum("pv,ws,rwvt", np.conj(Gu), Gu, C["qque"]) \ + 1/2*my_einsum("wt,pv,vsrw", Ge, np.conj(Gd), C["duql"]) \ - 1/2*(2*my_einsum("rv,pw,vwst", np.conj(Gd), np.conj(Gu), C["duue"]) \ + my_einsum("rv,pw,vswt", np.conj(Gd), np.conj(Gu), C["duue"])) \ + 1/2*( \ - 2*my_einsum("ws,vt,rpwv", Gu, Ge, C["qqql"]) \ + my_einsum("ws,vt,rwpv", Gu, Ge, C["qqql"]) \ - 2*my_einsum("ws,vt,wrpv", Gu, Ge, C["qqql"])) \ + 1/2*(my_einsum("vr,vpst", Gu @ Gu.conj().T, C["qque"]) \ + my_einsum("vr,vpst", Gd @ Gd.conj().T, C["qque"])) \ + my_einsum("vs,prvt", Gu.conj().T @ Gu, C["qque"]) \ + my_einsum("vt,prsv", Ge.conj().T @ Ge, C["qque"]) Beta["qqql"] = -(3*g**2 \ + 1/3*gp**2 + 4*gs**2)*my_einsum("prst", C["qqql"]) \ - 4*g**2*(my_einsum("rpst", C["qqql"]) \ + my_einsum("srpt", C["qqql"]) \ + my_einsum("psrt", C["qqql"])) \ - 4*my_einsum("tv,sw,prwv", np.conj(Ge), np.conj(Gu), C["qque"]) \ + 2*(my_einsum("pv,rw,vwst", np.conj(Gd), np.conj(Gu), C["duql"]) \ + my_einsum("rv,pw,vwst", np.conj(Gd), np.conj(Gu), C["duql"])) \ + 1/2*(my_einsum("vp,vrst", Gu @ Gu.conj().T, C["qqql"]) \ + my_einsum("vp,vrst", Gd @ Gd.conj().T, C["qqql"])) \ + 1/2*(my_einsum("vr,pvst", Gu @ Gu.conj().T, C["qqql"]) \ + my_einsum("vr,pvst", Gd @ Gd.conj().T, C["qqql"])) \ + 1/2*(my_einsum("vs,prvt", Gu @ Gu.conj().T, C["qqql"]) \ + my_einsum("vs,prvt", Gd @ Gd.conj().T, C["qqql"])) \ + 1/2*my_einsum("vt,prsv", Ge @ Ge.conj().T, C["qqql"]) Beta["duue"] = -(2*gp**2 + 4*gs**2)*my_einsum("prst", C["duue"]) \ - 20/3*gp**2*my_einsum("psrt", C["duue"]) \ + 4*my_einsum("ws,vt,prwv", Gu, Ge, C["duql"]) \ - 8*my_einsum("vp,wr,vwst", Gd, Gu, C["qque"]) \ + my_einsum("vp,vrst", Gd.conj().T @ Gd, C["duue"]) \ + my_einsum("vr,pvst", Gu.conj().T @ Gu, C["duue"]) \ + my_einsum("vs,prvt", Gu.conj().T @ Gu, C["duue"]) \ + my_einsum("vt,prsv", Ge.conj().T @ Ge, C["duue"]) Beta["llphiphi"] = (2*Lambda \ - 3*g**2 \ + 2*GammaH)*C["llphiphi"]-3/2*(C["llphiphi"] @ Ge @ Ge.conj().T \ + Ge.conj() @ Ge.T @ C["llphiphi"]) return Beta
def beta_array(
C, HIGHSCALE=1, *args, **kwargs)
Return the beta functions of all SM parameters and SMEFT Wilson coefficients as a 1D numpy array.
def beta_array(C, HIGHSCALE=1, *args, **kwargs): """Return the beta functions of all SM parameters and SMEFT Wilson coefficients as a 1D numpy array.""" beta_odict = beta(C, HIGHSCALE, *args, **kwargs) return np.hstack([np.asarray(b).ravel() for b in beta_odict.values()])
def my_einsum(
indices, *args)
def my_einsum(indices, *args): hashargs = [HashableArray(arg) for arg in args] return _cached_einsum(indices, *hashargs)
Classes
class HashableArray
ndarray(shape, dtype=float, buffer=None, offset=0, strides=None, order=None)
An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory, whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array
, zeros
or empty
(refer
to the See Also section below). The parameters given here refer to
a low-level method (ndarray(...)
) for instantiating an array.
For more information, refer to the numpy
module and examine the
methods and attributes of an array.
Parameters
(for the new method; see Notes below)
shape : tuple of ints Shape of created array. dtype : data-type, optional Any object that can be interpreted as a numpy data type. buffer : object exposing buffer interface, optional Used to fill the array with data. offset : int, optional Offset of array data in buffer. strides : tuple of ints, optional Strides of data in memory. order : {'C', 'F'}, optional Row-major (C-style) or column-major (Fortran-style) order.
Attributes
T : ndarray
Transpose of the array.
data : buffer
The array's elements, in memory.
dtype : dtype object
Describes the format of the elements in the array.
flags : dict
Dictionary containing information related to memory use, e.g.,
'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
flat : numpy.flatiter object
Flattened version of the array as an iterator. The iterator
allows assignments, e.g., x.flat = 3
(See ndarray.flat
for
assignment examples; TODO).
imag : ndarray
Imaginary part of the array.
real : ndarray
Real part of the array.
size : int
Number of elements in the array.
itemsize : int
The memory use of each array element in bytes.
nbytes : int
The total number of bytes required to store the array data,
i.e., itemsize * size
.
ndim : int
The array's number of dimensions.
shape : tuple of ints
Shape of the array.
strides : tuple of ints
The step-size required to move from one element to the next in
memory. For example, a contiguous (3, 4)
array of type
int16
in C-order has strides (8, 2)
. This implies that
to move from element to element in memory requires jumps of 2 bytes.
To move from row-to-row, one needs to jump 8 bytes at a time
(2 * 4
).
ctypes : ctypes object
Class containing properties of the array needed for interaction
with ctypes.
base : ndarray
If the array is a view into another array, that array is its base
(unless that array is also a view). The base
array is where the
array data is actually stored.
See Also
array : Construct an array.
zeros : Create an array, each element of which is zero.
empty : Create an array, but leave its allocated memory unchanged (i.e.,
it contains "garbage").
dtype : Create a data-type.
numpy.typing.NDArray : An ndarray alias :term:generic <generic type>
w.r.t. its dtype.type <numpy.dtype.type>
.
Notes
There are two modes of creating an array using __new__
:
- If
buffer
is None, then onlyshape
,dtype
, andorder
are used. - If
buffer
is an object exposing the buffer interface, then all keywords are interpreted.
No __init__
method is needed because the array is fully initialized
after the __new__
method.
Examples
These examples illustrate the low-level ndarray
constructor. Refer
to the See Also
section above for easier ways of constructing an
ndarray.
First mode, buffer
is None:
np.ndarray(shape=(2,2), dtype=float, order='F') array([[0.0e+000, 0.0e+000], # random [ nan, 2.5e-323]])
Second mode:
np.ndarray((2,), buffer=np.array([1,2,3]), ... offset=np.int_().itemsize, ... dtype=int) # offset = 1*itemsize, i.e. skip first element array([2, 3])
class HashableArray(np.ndarray): def __new__(cls, data, dtype=None): return np.array(data, dtype).view(cls) def __hash__(self): return hash(self.data.tobytes()) # return int(sha1(self).hexdigest(), 16) def __eq__(self, other): return np.all(np.ndarray.__eq__(self, other)) def __setitem__(self, key, value): raise Exception('HashableArray is read-only')
Ancestors (in MRO)
- HashableArray
- numpy.ndarray
- builtins.object
Class variables
var T
var base
var ctypes
var data
var dtype
var flags
var flat
var imag
var itemsize
var nbytes
var ndim
var real
var shape
var size
var strides