Top

wilson.run.smeft.definitions module

Definitions of auxiliary objects and operator properties.

"""Definitions of auxiliary objects and operator properties."""

import numpy as np
from wilson.util import smeftutil


def flavor_rotation(C_in, Uq, Uu, Ud, Ul, Ue, sm_parameters=True):
    """Gauge-invariant $U(3)^5$ flavor rotation of all Wilson coefficients and
    SM parameters."""
    C = {}
    if sm_parameters:
        # nothing to do for scalar SM parameters
        for k in ['g', 'gp', 'gs', 'Lambda', 'm2']:
            C[k] = C_in[k]
        C['Ge'] = Ul.conj().T @ C_in['Ge'] @ Ue
        C['Gu'] = Uq.conj().T @ C_in['Gu'] @ Uu
        C['Gd'] = Uq.conj().T @ C_in['Gd'] @ Ud
    # nothing to do for purely bosonic operators
    for k in smeftutil.WC_keys_0f:
        C[k] = C_in[k]
    # see 1704.03888 table 4 (but staying SU(2) invariant here)
    # LR
    for k in ['ephi', 'eW', 'eB']:
        C[k] = Ul.conj().T @ C_in[k] @ Ue
    for k in ['uphi', 'uW', 'uB', 'uG']:
        C[k] = Uq.conj().T @ C_in[k] @ Uu
    for k in ['dphi', 'dW', 'dB', 'dG']:
        C[k] = Uq.conj().T @ C_in[k] @ Ud
    # LL
    for k in ['phil1', 'phil3']:
        C[k] = Ul.conj().T @ C_in[k] @ Ul
    for k in ['phiq1', 'phiq3']:
        C[k] = Uq.conj().T @ C_in[k] @ Uq
    C['llphiphi'] = Ul.T @ C_in['llphiphi'] @ Ul
    # RR
    C['phie'] = Ue.conj().T @ C_in['phie'] @ Ue
    C['phiu'] = Uu.conj().T @ C_in['phiu'] @ Uu
    C['phid'] = Ud.conj().T @ C_in['phid'] @ Ud
    C['phiud'] = Uu.conj().T @ C_in['phiud'] @ Ud
    # 4-fermion
    C['ll'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Ul, Ul, Ul.conj(), Ul.conj(), C_in['ll'])
    C['ee'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Ue, Ue, Ue.conj(), Ue.conj(), C_in['ee'])
    C['le'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Ul, Ue, Ul.conj(), Ue.conj(), C_in['le'])
    C['qq1'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uq, Uq, Uq.conj(), Uq.conj(), C_in['qq1'])
    C['qq3'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uq, Uq, Uq.conj(), Uq.conj(), C_in['qq3'])
    C['dd'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Ud, Ud, Ud.conj(), Ud.conj(), C_in['dd'])
    C['uu'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uu, Uu, Uu.conj(), Uu.conj(), C_in['uu'])
    C['ud1'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uu, Ud, Uu.conj(), Ud.conj(), C_in['ud1'])
    C['ud8'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uu, Ud, Uu.conj(), Ud.conj(), C_in['ud8'])
    C['qu1'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uq, Uu, Uq.conj(), Uu.conj(), C_in['qu1'])
    C['qu8'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uq, Uu, Uq.conj(), Uu.conj(), C_in['qu8'])
    C['qd1'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uq, Ud, Uq.conj(), Ud.conj(), C_in['qd1'])
    C['qd8'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uq, Ud, Uq.conj(), Ud.conj(), C_in['qd8'])
    C['quqd1'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uu, Ud, Uq.conj(), Uq.conj(), C_in['quqd1'])
    C['quqd8'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uu, Ud, Uq.conj(), Uq.conj(), C_in['quqd8'])
    C['lq1'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Ul, Uq, Ul.conj(), Uq.conj(), C_in['lq1'])
    C['lq3'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Ul, Uq, Ul.conj(), Uq.conj(), C_in['lq3'])
    C['ld'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Ul, Ud, Ul.conj(), Ud.conj(), C_in['ld'])
    C['lu'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Ul, Uu, Ul.conj(), Uu.conj(), C_in['lu'])
    C['qe'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uq, Ue, Uq.conj(), Ue.conj(), C_in['qe'])
    C['ed'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Ue, Ud, Ue.conj(), Ud.conj(), C_in['ed'])
    C['eu'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Ue, Uu, Ue.conj(), Uu.conj(), C_in['eu'])
    C['ledq'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Ue, Uq, Ul.conj(), Ud.conj(), C_in['ledq'])
    C['lequ1'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Ue, Uu, Ul.conj(), Uq.conj(), C_in['lequ1'])
    C['lequ3'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Ue, Uu, Ul.conj(), Uq.conj(), C_in['lequ3'])
    C['duql'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uu, Ul, Ud, Uq, C_in['duql'])
    C['qque'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uq, Ue, Uq, Uu, C_in['qque'])
    C['qqql'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uq, Ul, Uq, Uq, C_in['qqql'])
    C['duue'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uu, Ue, Ud, Uu, C_in['duue'])
    return C

Functions

def flavor_rotation(

C_in, Uq, Uu, Ud, Ul, Ue, sm_parameters=True)

Gauge-invariant $U(3)^5$ flavor rotation of all Wilson coefficients and SM parameters.

def flavor_rotation(C_in, Uq, Uu, Ud, Ul, Ue, sm_parameters=True):
    """Gauge-invariant $U(3)^5$ flavor rotation of all Wilson coefficients and
    SM parameters."""
    C = {}
    if sm_parameters:
        # nothing to do for scalar SM parameters
        for k in ['g', 'gp', 'gs', 'Lambda', 'm2']:
            C[k] = C_in[k]
        C['Ge'] = Ul.conj().T @ C_in['Ge'] @ Ue
        C['Gu'] = Uq.conj().T @ C_in['Gu'] @ Uu
        C['Gd'] = Uq.conj().T @ C_in['Gd'] @ Ud
    # nothing to do for purely bosonic operators
    for k in smeftutil.WC_keys_0f:
        C[k] = C_in[k]
    # see 1704.03888 table 4 (but staying SU(2) invariant here)
    # LR
    for k in ['ephi', 'eW', 'eB']:
        C[k] = Ul.conj().T @ C_in[k] @ Ue
    for k in ['uphi', 'uW', 'uB', 'uG']:
        C[k] = Uq.conj().T @ C_in[k] @ Uu
    for k in ['dphi', 'dW', 'dB', 'dG']:
        C[k] = Uq.conj().T @ C_in[k] @ Ud
    # LL
    for k in ['phil1', 'phil3']:
        C[k] = Ul.conj().T @ C_in[k] @ Ul
    for k in ['phiq1', 'phiq3']:
        C[k] = Uq.conj().T @ C_in[k] @ Uq
    C['llphiphi'] = Ul.T @ C_in['llphiphi'] @ Ul
    # RR
    C['phie'] = Ue.conj().T @ C_in['phie'] @ Ue
    C['phiu'] = Uu.conj().T @ C_in['phiu'] @ Uu
    C['phid'] = Ud.conj().T @ C_in['phid'] @ Ud
    C['phiud'] = Uu.conj().T @ C_in['phiud'] @ Ud
    # 4-fermion
    C['ll'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Ul, Ul, Ul.conj(), Ul.conj(), C_in['ll'])
    C['ee'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Ue, Ue, Ue.conj(), Ue.conj(), C_in['ee'])
    C['le'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Ul, Ue, Ul.conj(), Ue.conj(), C_in['le'])
    C['qq1'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uq, Uq, Uq.conj(), Uq.conj(), C_in['qq1'])
    C['qq3'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uq, Uq, Uq.conj(), Uq.conj(), C_in['qq3'])
    C['dd'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Ud, Ud, Ud.conj(), Ud.conj(), C_in['dd'])
    C['uu'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uu, Uu, Uu.conj(), Uu.conj(), C_in['uu'])
    C['ud1'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uu, Ud, Uu.conj(), Ud.conj(), C_in['ud1'])
    C['ud8'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uu, Ud, Uu.conj(), Ud.conj(), C_in['ud8'])
    C['qu1'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uq, Uu, Uq.conj(), Uu.conj(), C_in['qu1'])
    C['qu8'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uq, Uu, Uq.conj(), Uu.conj(), C_in['qu8'])
    C['qd1'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uq, Ud, Uq.conj(), Ud.conj(), C_in['qd1'])
    C['qd8'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uq, Ud, Uq.conj(), Ud.conj(), C_in['qd8'])
    C['quqd1'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uu, Ud, Uq.conj(), Uq.conj(), C_in['quqd1'])
    C['quqd8'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uu, Ud, Uq.conj(), Uq.conj(), C_in['quqd8'])
    C['lq1'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Ul, Uq, Ul.conj(), Uq.conj(), C_in['lq1'])
    C['lq3'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Ul, Uq, Ul.conj(), Uq.conj(), C_in['lq3'])
    C['ld'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Ul, Ud, Ul.conj(), Ud.conj(), C_in['ld'])
    C['lu'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Ul, Uu, Ul.conj(), Uu.conj(), C_in['lu'])
    C['qe'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uq, Ue, Uq.conj(), Ue.conj(), C_in['qe'])
    C['ed'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Ue, Ud, Ue.conj(), Ud.conj(), C_in['ed'])
    C['eu'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Ue, Uu, Ue.conj(), Uu.conj(), C_in['eu'])
    C['ledq'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Ue, Uq, Ul.conj(), Ud.conj(), C_in['ledq'])
    C['lequ1'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Ue, Uu, Ul.conj(), Uq.conj(), C_in['lequ1'])
    C['lequ3'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Ue, Uu, Ul.conj(), Uq.conj(), C_in['lequ3'])
    C['duql'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uu, Ul, Ud, Uq, C_in['duql'])
    C['qque'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uq, Ue, Uq, Uu, C_in['qque'])
    C['qqql'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uq, Ul, Uq, Uq, C_in['qqql'])
    C['duue'] = np.einsum('jb,ld,ia,kc,ijkl->abcd', Uu, Ue, Ud, Uu, C_in['duue'])
    return C